753 research outputs found
A two-way photonic interface for linking Sr+ transition at 422 nm to the telecommunications C-band
We report a single-stage bi-directional interface capable of linking Sr+
trapped ion qubits in a long-distance quantum network. Our interface converts
photons between the Sr+ emission wavelength at 422 nm and the telecoms C-band
to enable low-loss transmission over optical fiber. We have achieved both up-
and down-conversion at the single photon level with efficiencies of 9.4% and
1.1% respectively. Furthermore we demonstrate noise levels that are low enough
to allow for genuine quantum operation in the future.Comment: 5 pages, 4 figure
Raman Quantum Memory with Built-In Suppression of Four-wave Mixing Noise
Quantum memories are essential for large-scale quantum information networks.
Along with high efficiency, storage lifetime and optical bandwidth, it is
critical that the memory add negligible noise to the recalled signal. A common
source of noise in optical quantum memories is spontaneous four-wave mixing. We
develop and implement a technically simple scheme to suppress this noise
mechanism by means of quantum interference. Using this scheme with a Raman
memory in warm atomic vapour we demonstrate over an order of magnitude
improvement in noise performance. Furthermore we demonstrate a method to
quantify the remaining noise contributions and present a route to enable
further noise suppression. Our scheme opens the way to quantum demonstrations
using a broadband memory, significantly advancing the search for scalable
quantum photonic networks.Comment: 6 pages, 5 figures plus Supplementary Materia
High-speed noise-free optical quantum memory
Quantum networks promise to revolutionise computing, simulation, and
communication. Light is the ideal information carrier for quantum networks, as
its properties are not degraded by noise in ambient conditions, and it can
support large bandwidths enabling fast operations and a large information
capacity. Quantum memories, devices that store, manipulate, and release on
demand quantum light, have been identified as critical components of photonic
quantum networks, because they facilitate scalability. However, any noise
introduced by the memory can render the device classical by destroying the
quantum character of the light. Here we introduce an intrinsically noise-free
memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We
consequently demonstrate for the first time successful storage of GHz-bandwidth
heralded single photons in a warm atomic vapour with no added noise; confirmed
by the unaltered photon statistics upon recall. Our ORCA memory platform meets
the stringent noise-requirements for quantum memories whilst offering technical
simplicity and high-speed operation, and therefore is immediately applicable to
low-latency quantum networks
Theory of noise suppression in {\Lambda}-type quantum memories by means of a cavity
Quantum memories, capable of storing single photons or other quantum states
of light, to be retrieved on-demand, offer a route to large-scale quantum
information processing with light. A promising class of memories is based on
far-off-resonant Raman absorption in ensembles of -type atoms. However
at room temperature these systems exhibit unwanted four-wave mixing, which is
prohibitive for applications at the single-photon level. Here we show how this
noise can be suppressed by placing the storage medium inside a moderate-finesse
optical cavity, thereby removing the main roadblock hindering this approach to
quantum memory.Comment: 10 pages, 3 figures. This paper provides the theoretical background
to our recent experimental demonstration of noise suppression in a
cavity-enhanced Raman-type memory ( arXiv:1510.04625 ). See also the related
paper arXiv:1511.05448, which describes numerical modelling of an atom-filled
cavity. Comments welcom
Experimental demonstration of quantum effects in the operation of microscopic heat engines
The heat engine, a machine that extracts useful work from thermal sources, is
one of the basic theoretical constructs and fundamental applications of
classical thermodynamics. The classical description of a heat engine does not
include coherence in its microscopic degrees of freedom. By contrast, a quantum
heat engine might possess coherence between its internal states. Although the
Carnot efficiency cannot be surpassed, and coherence can be performance
degrading in certain conditions, it was recently predicted that even when using
only thermal resources, internal coherence can enable a quantum heat engine to
produce more power than any classical heat engine using the same resources.
Such a power boost therefore constitutes a quantum thermodynamic signature. It
has also been shown that the presence of coherence results in the thermodynamic
equivalence of different quantum heat engine types, an effect with no classical
counterpart. Microscopic heat machines have been recently implemented with
trapped ions, and proposals for heat machines using superconducting circuits
and optomechanics have been made. When operated with standard thermal baths,
however, the machines implemented so far have not demonstrated any inherently
quantum feature in their thermodynamic quantities. Here we implement two types
of quantum heat engines by use of an ensemble of nitrogen-vacancy centres in
diamond, and experimentally demonstrate both the coherence power boost and the
equivalence of different heat-engine types. This constitutes the first
observation of quantum thermodynamic signatures in heat machines
Ultrahigh and persistent optical depths of caesium in Kagom\'e-type hollow-core photonic crystal fibres
Alkali-filled hollow-core fibres are a promising medium for investigating
light-matter interactions, especially at the single-photon level, due to the
tight confinement of light and high optical depths achievable by light-induced
atomic desorption. However, until now these large optical depths could only be
generated for seconds at most once per day, severely limiting the practicality
of the technology. Here we report the generation of highest observed transient
( for up to a minute) and highest observed persistent ( for
hours) optical depths of alkali vapours in a light-guiding geometry to date,
using a caesium-filled Kagom\'e-type hollow-core photonic crystal fibre. Our
results pave the way to light-matter interaction experiments in confined
geometries requiring long operation times and large atomic number densities,
such as generation of single-photon-level nonlinearities and development of
single photon quantum memories.Comment: Author Accepted versio
Sceptical Employees as CSR Ambassadors in Times of Financial Uncertainty
This chapter offers new insights into the understanding of internal (employee) perceptions of organizational corporate social responsibility (CSR) policies and strategies. This study explores the significance of employeesâ involvement and scepticism upon CSR initiatives and focuses on the effects it may have upon word of mouth (WOM) and the development of employeeâorganisation relationships. Desk research introduces the research questions. Data for the research questions were gathered through a self-completion questionnaire distributed in a hardcopy form to the sample. An individualâs level of scepticism and involvement appears to affect the development of a positive effect on employeesâ WOM. Involvement with the domain of the investment may be a central factor affecting relationship building within the organization, and upon generation of positive WOM. The chapter offers a conceptual framework to public relations (PR) and corporate communications practitioners, which may enrich their views and understanding of the use and value of CSR for communication strategies and practices. For-profit organisations are major institutions in todayâs society. CSR is proffered as presenting advantages for (at macro level) society and (micro level) the organization and its employees. Concepts, such as involvement and scepticism, which have not been rigorously examined in PR and corporate communication literature, are addressed. By examining employee perceptions, managers and academic researchers gain insights into the acceptance, appreciation and effectiveness of CSR policies and activities upon the employee stakeholder group. This will affect current and future CSR communication strategies. The knowledge acquired from this chapter may be transferable outside the for-profit sector
Effect of s-triazine ring substitution on the synthesis of organic resorcinol-formaldehyde xerogels
Resorcinol (R) and formaldehyde (F) gel synthesis has been well-studied along with alternative reagents. We present the synthesis of formaldehyde-based xerogels using chemically similar s-triazine precursors, with comparison to traditional analogues. The substitution ranges from tri-hydroxyl to tri-amine, with an intermediate species, allowing changing chemistry to be investigated. Each molecule (X) offers different acid/base properties, known to influence gel formation, as well as differences in crosslinking potential. Varying X/F ratios were selected to recreate the stoichiometry used in RF systems, where one represented higher F to match the increased reaction sites of the additives. X/C ratios were selected to probe different catalyst (C) ratios, while working within the range likely to produce viable gels. Results obtained show little impact for ammeline as an additive due to its similarity to resorcinol (activation sites and pKa); while melamine and cyanuric acid show differing behavior depending on the level of addition. Low concentrations show melamine to have the most impact due to increased activation and competition for formaldehyde; while at high concentrations, cyanuric acid is shown to have the greatest impact as it creates a more acidic environment, which diminishes textural character, possibly attributable to larger clusters and/or weaker cross-linking of the system
- âŠ