71 research outputs found

    Asymptotically exact a posteriori error estimates for the BDM finite element approximation of mixed Laplace eigenvalue problems

    Get PDF
    We derive optimal and asymptotically exact a posteriori error estimates for the approximation of the eigenfunction of the Laplace eigenvalue problem. To do so, we combine two results from the literature. First, we use the hypercircle techniques developed for mixed eigenvalue approximations with Raviart-Thomas finite elements. In addition, we use the post-processings introduced for the eigenvalue and eigenfunction based on mixed approximations with the Brezzi-Douglas-Marini finite element. To combine these approaches, we define a novel additional local post-processing for the fluxes that appropriately modifies the divergence without compromising the approximation properties. Consequently, the new flux can be used to derive optimal and asymptotically exact upper bounds for the eigenfunction, and optimal upper bounds for the corresponding eigenvalue. Numerical examples validate the theory and motivate the use of an adaptive mesh refinement.</p

    A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators

    Full text link
    The embedded discontinuous Galerkin (EDG) finite element method for the Stokes problem results in a point-wise divergence-free approximate velocity on cells. However, the approximate velocity is not H(div)-conforming and it can be shown that this is the reason that the EDG method is not pressure-robust, i.e., the error in the velocity depends on the continuous pressure. In this paper we present a local reconstruction operator that maps discretely divergence-free test functions to exactly divergence-free test functions. This local reconstruction operator restores pressure-robustness by only changing the right hand side of the discretization, similar to the reconstruction operator recently introduced for the Taylor--Hood and mini elements by Lederer et al. (SIAM J. Numer. Anal., 55 (2017), pp. 1291--1314). We present an a priori error analysis of the discretization showing optimal convergence rates and pressure-robustness of the velocity error. These results are verified by numerical examples. The motivation for this research is that the resulting EDG method combines the versatility of discontinuous Galerkin methods with the computational efficiency of continuous Galerkin methods and accuracy of pressure-robust finite element methods

    Gradient-robust hybrid DG discretizations for the compressible Stokes equations

    Full text link
    This paper studies two hybrid discontinuous Galerkin (HDG) discretizations for the velocity-density formulation of the compressible Stokes equations with respect to several desired structural properties, namely provable convergence, the preservation of non-negativity and mass constraints for the density, and gradient-robustness. The later property dramatically enhances the accuracy in well-balanced situations, such as the hydrostatic balance where the pressure gradient balances the gravity force. One of the studied schemes employs an H(div)-conforming velocity ansatz space which ensures all mentioned properties, while a fully discontinuous method is shown to satisfy all properties but the gradient-robustness. Also higher-order schemes for both variants are presented and compared in three numerical benchmark problems. The final example shows the importance also for non-hydrostatic well-balanced states for the compressible Navier-Stokes equations

    High-order projection-based upwind method for implicit large eddy simulation

    Get PDF
    We assess the ability of three different approaches based on high-order discontinuous Galerkin methods to simulate under-resolved turbulent flows. The capabilities of the mass conserving mixed stress method as structure resolving large eddy simulation solver are examined. A comparison of a variational multiscale model to no-model or an implicit model approach is presented via numerical results. In addition, we present a novel approach for turbulent modeling in wall-bounded flows. This new technique provides a more accurate representation of the actual subgrid scales in the near wall region and gives promising results for highly under-resolved flow problems. In this paper, the turbulent channel flow and periodic hill flow problem are considered as benchmarks for our simulations.</p

    A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry

    Get PDF
    We introduce a new discretization of a mixed formulation of the incompressible Stokes equations that includes symmetric viscous stresses. The method is built upon a mass conserving mixed formulation that we recently studied. The improvement in this work is a new method that directly approximates the viscous fluid stress σ\sigma, enforcing its symmetry weakly. The finite element space in which the stress is approximated consists of matrix-valued functions having continuous "normal-tangential" components across element interfaces. Stability is achieved by adding certain matrix bubbles that were introduced earlier in the literature on finite elements for linear elasticity. Like the earlier work, the new method here approximates the fluid velocity uu using H(div)H(\operatorname{div})-conforming finite elements, thus providing exact mass conservation. Our error analysis shows optimal convergence rates for the pressure and the stress variables. An additional post processing yields an optimally convergent velocity satisfying exact mass conservation. The method is also pressure robust

    Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements

    Get PDF
    Classical inf-sup stable mixed finite elements for the incompressible (Navier--)Stokes equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure. How-ever, a modification only in the right hand side of a Stokes discretization is able to reestablish pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous discrete pressures. In this contribution, this idea is extended to low and high order Taylor--Hood and mini elements, which have continuous discrete pressures. For the modification of the right hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test functions to exactly divergence-free ones. The reconstruction is based on local H(div)-conforming flux equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency and optimal a-priori error estimates. Numerical examples for the incompressible Stokes and Navier--Stokes equations confirm that the new pressure-robust Taylor--Hood and mini elements converge with optimal order and outperform signi--cantly the classical versions of those elements when the continuous pressure is comparably large
    corecore