111 research outputs found

    Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX

    Full text link
    Lasso is a seminal contribution to high-dimensional statistics, but it hinges on a tuning parameter that is difficult to calibrate in practice. A partial remedy for this problem is Square-Root Lasso, because it inherently calibrates to the noise variance. However, Square-Root Lasso still requires the calibration of a tuning parameter to all other aspects of the model. In this study, we introduce TREX, an alternative to Lasso with an inherent calibration to all aspects of the model. This adaptation to the entire model renders TREX an estimator that does not require any calibration of tuning parameters. We show that TREX can outperform cross-validated Lasso in terms of variable selection and computational efficiency. We also introduce a bootstrapped version of TREX that can further improve variable selection. We illustrate the promising performance of TREX both on synthetic data and on a recent high-dimensional biological data set that considers riboflavin production in B. subtilis

    Compute Less to Get More: Using ORC to Improve Sparse Filtering

    Full text link
    Sparse Filtering is a popular feature learning algorithm for image classification pipelines. In this paper, we connect the performance of Sparse Filtering with spectral properties of the corresponding feature matrices. This connection provides new insights into Sparse Filtering; in particular, it suggests early stopping of Sparse Filtering. We therefore introduce the Optimal Roundness Criterion (ORC), a novel stopping criterion for Sparse Filtering. We show that this stopping criterion is related with pre-processing procedures such as Statistical Whitening and demonstrate that it can make image classification with Sparse Filtering considerably faster and more accurate

    How Correlations Influence Lasso Prediction

    Full text link
    We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations are, the smaller the optimal tuning parameter is. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations

    Optimal Two-Step Prediction in Regression

    Full text link
    High-dimensional prediction typically comprises two steps: variable selection and subsequent least-squares refitting on the selected variables. However, the standard variable selection procedures, such as the lasso, hinge on tuning parameters that need to be calibrated. Cross-validation, the most popular calibration scheme, is computationally costly and lacks finite sample guarantees. In this paper, we introduce an alternative scheme, easy to implement and both computationally and theoretically efficient
    corecore