156 research outputs found

    Approach to first-order exact solutions of the Ablowitz-Ladik equation

    Get PDF
    We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE).Two of the authors (A.A. and N.A.) acknowledge the support of the Australian Research Council (Discovery Project No. DP0985394). N.A. is a grateful recipient of support from the Alexander von Humboldt Foundation (Germany)

    Manipulating the Interaction between Localized and Delocalized Surface Plasmon Polaritons in Graphene

    Full text link
    The excitation of localized or delocalized surface plasmon polaritons in nanostructured or extended graphene has attracted a steadily increasing attention due to their promising applications in sensors, switches, and filters. These single resonances may couple and intriguing spectral signatures can be achieved by exploiting the entailing hybridization. Whereas thus far only the coupling between localized or delocalized surface plasmon polaritons has been studied in graphene nanostructures, we consider here the interaction between a localized and a delocalized surface plasmon polariton. This interaction can be achieved by two different schemes that reside on either evanescent near- field coupling or far-field interference. All observable phenomena are corroborated by analytical considerations, providing insight into the physics and paving the way for compact and tunable optical components at infrared and terahertz frequencies.Comment: 6 pages, 4 figure

    An advanced Jones calculus for the classification of periodic metamaterials

    Full text link
    By relying on an advanced Jones calculus we analyze the polarization properties of light upon propagation through metamaterial slabs in a comprehensive manner. Based on symmetry considerations, we show that all periodic metamaterials may be divided into five different classes only. It is shown that each class differently affects the polarization of the transmitted light and sustains different eigenmodes. We show how to deduce these five classes from symmetry considerations and provide a simple algorithm that can be applied to decide by measuring transmitted intensities to which class a given metamaterial is belonging to only

    Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals

    Get PDF
    We predict a novel type of cavity solitons, Bloch cavity solitons, existing in nonlinear resonators with the refractive index modulated in both longitudinal and transverse directions and for both focusing (at normal diffraction) and defocusing (at anomalous diffraction) nonlinearities. We develop a modified mean-field theory and analyze the properties of these novel cavity solitons demonstrating, in particular, their substantial narrowing in the zero-diffraction regime

    Coupling between a dark and a bright eigenmode in a terahertz metamaterial

    Full text link
    Terahertz time domain spectroscopy and rigorous simulations are used to probe the coupling between a dark and a bright plasmonic eigenmode in a metamaterial with broken symmetry. The metamaterial consists of two closely spaced split ring resonators that have their gaps in non-identical positions within the ring. For normal incidence and a fixed polarization both lowest order eigenmodes of the split ring resonators can be excited; although one of them has to be regarded as dark since coupling is prohibited because of symmetry constraints. Emphasis in this work is put on a systematic evaluation of the coupling effects depending on a spectral tuning of both resonances
    corecore