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Approach to first-order exact solutions of the Ablowitz-Ladik equation
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We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the
real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions
of the A-L equation with two independent parameters. This novel technique shows that every exact solution of
the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE).
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I. INTRODUCTION

Extreme waves, for example, optical needles, can occur
in spatially extended systems. Recently, such waves have
been observed in a nonlinear optical cavity made with a
ring oscillator with a liquid crystal light valve as the gain
medium [1].

Discrete dynamical systems are often applied to model
arrays of optical wave guides [2], electronic circuits [3,4],
nonlinear lattices [5], and a variety of other structures in
physics and engineering.

The Ablowitz-Ladik equation is one of the basic discrete
equations of the integrable hierarchy. As such it serves as
a model for the application of a range of techniques for
obtaining exact solutions. The Ablowitz-Ladik equation is
one of the early examples of an equation to which the
inverse scattering technique has been applied. Various other
methods, such as Darboux and Backlund transformations,
have also been applied to solve this equation. Generally
speaking, every technique applicable to the basic NLSE
equation can also be applied, with some modifications, to the
A-L equation. These modifications are far from being trivial,
since discrete and continuous variables have to be treated
differently. Nevertheless, the concept is there.

Discrete systems have specific features that make them
more difficult to solve than continuous differential equations.
Even integrable equations such as the A-L equation present
certain problems. The difficulties do appear [6] despite the
fact that the inverse scattering technique for this system is
well known. Thus, any new technique that allows us to obtain
solutions is of interest and will present new properties of
solutions, thus strengthening our abilities to deal with the
equation. Moreover, deriving a class of solutions using a new
technique means that this class has hidden symmetries that
were unknown and are waiting to be revealed. Clearly, a new
technique is of great value by itself, even if particular solutions
of this class were previously obtained using other methods.

One of the ways to solve the continuous NLSE is using the
ansatz that was first applied to the NLSE by Akhmediev and
Korneev (the AK ansatz) [7]. It was used later in [8] to find
the whole family of first-order solutions of the self-focusing
NLSE (see also the book [9] for more detailed derivations).
Our question here is as follows: Can the same ansatz be used
to solve the A-L equation? The answer turns out to be in the

affirmative. Below, we present a few examples of solutions
derived this way.

The standard form of the integrable A-L equation can be
written as [10–13]:

i
∂ψn

∂t
+ (ψn−1 + ψn+1) (1 + |ψn|2) − 2 ψn = 0, (1)

where t is the continuous evolution variable (time or longitu-
dinal spatial variable) and n = 0, ± 1, ± 2, . . . are integers.

II. LINEAR ANSATZ

The complex function ψn(t) on a constant background of
amplitude q can be written explicitly as

ψn(t) = [Rn(t) − q + i Jn(t)] ei2q2 t+iφ0 , (2)

where Rn(t) and Jn(t) are real functions. The NLS equation can
be solved with a simple ansatz which was first used in the work
[7]. This ansatz leads to a rich family of first-order solutions of
the NLSE. A whole class of solutions was thus derived from
first principles. Our conjecture here is that a corresponding
ansatz can be used for the A-L equation (1). Namely, we
propose that the real and imaginary parts of the solution in
the complex plane, rotating with the angular frequency 2q2,
are linearly related, that is, for arbitrary n we can write

Jn(t) = m(t) Rn(t) + c(t), (3)

where the coefficients m(t) and c(t) depend only on t . In
this paper, we first consider a subset of this class, viz.
solutions additionally having the property that c(t) = 0. Later,
in Sec. VI, we present the analysis with c(t) �= 0.

Let us use (3) and substitute (2) into (1). Namely, from (3),
we have

J ′
n(t) = m′(t)Rn(t) + m(t) R′

n(t). (4)

After the substitution, separating the real and imaginary parts
of the A-L equation we obtain two equations:

b (Rn−1 + Rn+1 − 2q) + 2q(1 + q2)

−Rn(2 + 2q2 + m′(t)) − m R′
n = 0, (5)

and

m b (Rn−1 + Rn+1) + R′
n − 2(1 + q2)m Rn = 0, (6)
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where

b = [
1 + q2 − 2q Rn(1 + m2) R2

n

]
.

Now, we insert Rn−1 + Rn+1 from Eq. (5) into Eq. (6) and
get a first-order differential equation in Rn(t). We simplify this
further by defining

Pn(t) = 1/Rn(t). (7)

Then we obtain the ordinary differential equation for Pn(t):

P ′
n(t) = 2q m(t) + m(t)[m′(t) − 4q2]

1 + m2(t)
Pn(t). (8)

Solving this equation allows us to find the function m(t) and
hence exact solutions of the A-L equation itself. This can be
done in a few steps.

III. EXACT SOLUTION FOR MODULATION
INSTABILITY (MI)

To obtain the MI solution, we assume that variables n and
t can be separated, so that Eq. (8) has a solution in the form of
a product:

Pn(t) = s1 + s2 f (n) g(t),

where s1 > 0, and s2 are real constants but f (n)( �= const.) is
a function of n. Then Eq. (8) gives

A(t) − f (n)B(t) = 0, (9)

where

A(t) = 2q − 4s1q
2 + 2qm2(t) + s1 m′(t),

and

B(t) = s2

m(t)
[(1 + m2(t))g′(t) + g(t)m(t)(4q2 − m′(t))].

Clearly, A(t) and B(t) in (9) must both be zero. Thus, solving
A(t) = 0 [with m(0) = 0], we obtain

m(t) =
√

2s1q − 1 tanh

[
2q

s1

√
2s1q − 1t

]
. (10)

Then, using Eq. (10) and solving B(t) = 0 [with g(0) =
1,g′(0) = 0] shows that

g(t) = sech

(
2q

s1

√
2s1q − 1t

)
.

We define

s1 = q

2v(1 + q2)
,

so now the argument of the hyperbolic functions is δ t where

δ = 4
√

(1 + q2)v[q2(1 − v) − v]. (11)

Thus, we now have the functions of t and now only need to
find the function of n.

We define v = sin2(κ/2) for convenience. The effect of
modulation instability requires that we must have an oscilla-
tory function of n for the transverse direction. The phase of
this function is not important. For simplicity, we take an even

function, f (−n) = f (n) and set f (n) = cos(κ n). Here κ is an
arbitrary value in the MI range, that is, 0 < κ < κmax, where

κmax = arccos

(
1 − q2

1 + q2

)
.

Taking n = t = 0 in Eq. (5) shows that

s2 = c1

2v(1 + q2)
,

where

c1 =
√

q2(1 − v) − v

1 − v
.

Finally, we have

Pn(t) = q ± c1 cos(κ n) sech(δ t)

2v(1 + q2)
.

Thus, having the solution expression for Pn(t), we easily
derive the solution of the A-L equation:

ψn(t) =
[

2 (1 + q2)v + i δ
2 tanh(δ t)

q ± c1 cos(κn)sech(δ t)
− q

]
ei2q2t+iφ, (12)

where κ belongs to the interval of instability. The solution can
also be written in the form:

ψn(t) = e2iq2t

[
2 (1 + q2)v cosh(δ t) + i δ

2 sinh(δ t)

q cosh(δ t) ± c1 cos(κn)
− q

]
.

(13)

The period in the transverse (n) direction is 2π/κ . The solution
in this form has been presented earlier in [12]. It can also be
written in other forms [13]. From the form (13), it can be seen
that this solution is a complete discrete analog of the NLSE
solution (38) given in the work [8]. This can be seen more
clearly if we combine the two terms in (13) into one:

ψn(t)= e2iq2t

× (2v+2vq2−q2)cosh(δt) ∓ c1cos(κn)+i δ
2 sinh(δt)

q cosh(δt)±c1 cos(κn)
.

(14)

Apart from the constant coefficients, all functional terms in
this solution are the same as in (38) of [8]. This shows that
we can establish a one-to-one correspondence between the
solutions of the A-L and NLSE equations. The values q and
κ are two independent parameters of the family of solutions
defined by Eq. (14). Two more parameters can be introduced
as translations along the t and n axes. While translations along
the t axis seem to be trivial, as they only shift the solution by
an arbitrary t0 in the t direction, the shifts along the n axis are
more complicated. When the shift n0 is an integer, the solution
is indeed just shifted by an integer number of nodes. When
n0 is not an integer, the shift produces a new solution that has
different values at the nodes.

If, for κ , we choose the point of the maximum growth rate,
κ0 = arccos( 1

1+q2 ), then the dependent parameters will take
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FIG. 1. (Color online) Transversely periodic solution of the
A-L equation given by Eq. (14). The evolution starts with a
constant background q, slightly modulated, then the modulation
increases to reach its maximum at t = 0 and finally the solu-
tion returns back to the original background, q. Here, q = 1
and κ = π

3 .

the following values: δ = 2q2, v = q2

2(1+q2) , and c1 = q
√

1+q2

2+q2 .

In this special case, the solution can be reduced to a simpler
form:

�n(t) = iqe2iq2t

[√
2 + q2 sinh(2q2 t) ∓ i

√
1 + q2 cos(κ0n)√

2 + q2 cosh(2q2 t) ±
√

1 + q2 cos(κ0n)

]
,

(15)

where κ0 is fixed, as given above. In this form, we have a
complete analogy with the Akhmediev Breather (AB) solution
(39) of the work [8]. This solution is illustrated in Fig. 1. Here,
we have also fixed q = 1. This choice provides an integer
value for the period along the n axis. When the shift n0 is zero,
the maximum values of the soluton are located at discrete
sites.

IV. SOLITON ON A BACKGROUND

To obtain the soliton solution on a background, we take the
constant part of Pn to be negative. This seems like a minor
change, but it effectively swaps trigonometric and hyperbolic
functions, and thus changes the solution from being periodic in
the transverse (n) direction to being periodic in the propagation
(t) direction. Thus, physically, the soliton case is quite different
from MI. We take background as q, which is an arbitrary
number. We set

Pn(t) = s3[−1 ± s5 f (n) g(t) ],

where s3 > 0, s5 are constants but f (n)( �= const.) is a function
of n. Then Eq. (8) gives

A(t) + f (n)B(t) = 0, (16)

where

A(t) = 2qm(t) − s3 m(t)

1 + m2(t)
( m′(t) − 4q2) = 0,

and

B(t) = s3s5 g(t)m(t)

1 + m2(t)
( m′(t) − 4q2) − s3s5g

′(t).

Solving A(t) = 0 [with m(0) = 0], we obtain

m(t) =
√

1 + 2qs3 tan

[
2q

√
1 + 2qs3

s3
t

]
. (17)

Then, using Eq. (17) and solving B(t) = 0 [with g′(0) = 0]
shows that

g(t) = sec

(
2q

√
1 + 2qs3

s3
t

)
.

In light of the swap of trigonometric and hyperbolic
functions, we can expect f (n) to be the hyperbolic analog of
cos, viz. cosh. We thus set f (n) = cosh(κ2 n), with κ2 having
an arbitrary value. We define

u = sinh(κ2/2)

for convenience, so that κ2 = 2 arcsinh(u). This shows that
the solution is aperiodic in the transverse direction. On
substitution, we find

s3 = q

2(q2 + 1)u2
and s5 =

√
1 + (1 + q−2)u2

1 + u2
.

Finally, the slope m(t) can be rewritten as m(t) = s6 tan(w1 t),
where

s6 =
√

1 + q2

(q2 + 1)u2
,

and

w1 = 4(q2 + 1) u

√
u2 + q2

q2 + 1
.

Thus, in this formulation, q and u are the arbitrary parameters.
Once given, we can then find s3,s5,s6, and w1.

As a result, we have the following expression for Pn(t):

Pn(t) = s3[−1 ± s5 cosh(κ2 n) sec(w1 t) ].

Using Rn(t) = 1/Pn(t) and Eq. (3), this leads to the solution
of the A-L equation in its simplest form:

ψn(t) = e2iq2t

[
1 + is6 tan(w1 t)

s3[−1 ± s5 cosh(κ2 n) sec(w1 t)]
− q

]
. (18)

The period in the propagation (t) direction, 2π/w1 decreases
from ∞ to 0 as u increases from 0 to ∞. Thus all frequencies
are possible, in contrast to the modulation instability case of
Sec. III. For u → 0, we recover the first-order rogue discrete
solution. This solution can also be written in the form:

ψn(t)= e2iq2t

× (1+qs3)cos(w1t)∓qs3s5 cosh(κ2n)+is6 sin(w1 t)

−s3 cos(w1 t) ± s3s5 cosh(κ2 n)
.

(19)

This solution is a direct discrete analog of the NLSE solution
(52) of the work [8]. The latter is known as a soliton on a
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FIG. 2. (Color online) Soliton on a background defined by
Eqs. (18) and (19). Here, q = 1 and κ2 = 1.

background or “Ma soliton.” An illustrative example is shown
in Fig. 2.

V. FUNDAMENTAL ROGUE WAVE

The way to obtain this is simply to take a sum of the
functions (instead of a product):

Pn(t) = r1 + f (n) + g(t),

where r1 is a constant but f (n) is a function of n with f (0) = 0.
Then Eq. (8) gives

A1(t) − f (n)B1(t) = 0. (20)

The functions A1(t) and B1(t) must both be zero. Now

B1(t) = m′(t) − 4q2 = 0.

Thus, with m(0) = 0, we have

m(t) = 4q2 t.

Then A1(t) = 0 means that g′(t) = 8q3 t , so, with g(0) = 0,

g(t) = 4q3 t2.

We need a function which is even in variable n for f (n) [so
that f (−n) = f (n)]. Substituting into the recurrence relation,
Eq. (5) with n = 0 shows that r1 = 1

4q(1+q2) and f (1) = q

1+q2 ;
then n = 1 gives f (2) = 4 q

1+q2 , while n = 2 gives f (3) =
9 q

1+q2 , etc. We obtain f (n) = q

1+q2 [0,1,4,9,16,25,36, . . . ],

for n = [0,1,2,3,4, . . .], that is, f (n) = q n2

1+q2 . Thus we have
derived all the required functions.

Hence,

Pn = 1

1 + q2

[
1

4q
+ n2q

]
+ 4q3 t2.

Inverting this function provides the real part of ψn:

Rn(t) = 1

Pn(t)
= 4q(1 + q2)

1 + 4n2 q2 + 16q4(1 + q2)t2
.

FIG. 3. (Color online) Rational solution of the first order defined
by Eq. (21). Here, q = 1. The maximum amplitude is 7.

Thus, the solution can be written in the form:

ψn(t) = ei2q2t+iφ

× q

[
4(1 + q2)(1 + 4iq2 t)

1 + 4q2n2 + 16q4(1 + q2)t2
− 1

]
, (21)

which is a rational solution of the A-L equation [14].
Furthermore, this is a discrete analog of the solution (40) in
the work [8] which is presently known as “Peregrine soliton”
[15,16]. It is illustrated in Fig. 3. As this solution is localized
in both the t and n directions, it can be called “a wave that
appears from nowhere and disappears without a trace” [17]. In
case of the NLSE, it serves as a prototype of a rogue wave in
the deep ocean [16,18–22]. Its existence in optical fibers has
been demonstrated in a recent experimental work [23].

VI. SOLUTIONS PERIODIC IN n AND t .

The existence of homoclinic and heteroclinic orbits consid-
ered above means that there are periodic ones around them.
As the system is completely integrable, the saddle points with
modulation instability have nearby hyperbolic trajectories that
continue to these periodic orbits. In order to find them, we
now use

ψn(t) = [Gn(t) + i Jn(t)] eiω t+iφ, (22)

where ω = 2 kb q2, and, as before, we suppose that Gn(t) and
Jn(t) are linearly related:

Jn(t) = m(t) Gn(t) + c(t). (23)

As there is no explicitly separable background for periodic
solutions, we have generalized (3) and effectively included q

in the term Gn(t).
On substituting (22) into Eq. (1), as before, we separate real

and imaginary parts and take the sum Gn−1(t) + Gn+1(t) from
one of them and substitute into the other. This way, we find

2c(t)[c2(t) + 2c(t)Gnm(t) − q2 kb] + m(t)[c′(t) + Gn m′(t)]

+ [1 + m2(t)]

[
dGn

dt
+ 2c(t)G2

n

]
= 0. (24)
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For convenience, we set m(t) = c(t) m̂(t), and use

1/Gn(t) = f (n)

g(t)
− m̂(t).

Upon substitution, we find

D(t) + A(t)f 2(n) + B(t)f (n) = 0. (25)

Clearly, each component must be zero separately:

D(t) = m̂′(t) − 2c(t)[q2 kbm̂
2(t) − 1] = 0, (26)

A(t) = c(t)[2c2(t) − 2q2 kb + m̂(t) c′(t)] = 0, (27)

and

B(t) = c(t)g(t)m̂(t) [4q2 kb − m̂(t) c′(t)] + g′(t)
+ m̂(t) c2(t)[m̂(t) g′(t) + m̂′(t) g(t)] = 0.

Solving Eqs. (26) and (27), we obtain m̂(t) and c(t) as single
functions:

m̂(t) =
√

kb

q
cd

(
s t,k2

b

)
,

and

c(t) = q
√

kb sn
(
s t,k2

b

)
,

where sn and cd are Jacobi elliptic functions with moduli
of mb = k2

b , while the coefficient s = 2q2. There are two
different definitions for moduli of Jacobi elliptic functions
in the literature. One of them is simply the square of the other.
For clarity, here, we are using the convention that produces the
series sn(t,y) = t − t3(1 + y)/6 + . . .. Using these, we solve
B(t) = 0 and obtain the remaining function of t :

g(t) = q
√

k dn
(
s t,k2

b

)
.

We now need only the single function of n, and this turns out
to be

f (n) = kt nc(r n,k2),

where r is arbitrary and kt is an unknown constant.
If we define cm = cn(r,k2), then kb = sin(θ ), where

tan(θ ) = 1

k
√

1 − k2

(
1

1 + cm

− k2

)
.

Then

q2 = k
√

1 − k2 s2
m√

1 − k2
bcm

,

where sm = sn(r,k2). This constant agrees with that found in
[24].

This leads to

Gn(t) = q
√

k
dn

(
s t,k2

b

)
cn(r n,k2)

kt − √
kkbcn

(
s t,k2

b

)
cn(r n,k2)

,

and hence the complete solution,

ψn(t) = qeiω t+iφ

×
√

k dn
(
s t,k2

b

)
cn(r n,k2) + i

√
kbkt sn

(
s t,k2

b

)
kt − √

kkbcn
(
s t,k2

b

)
cn(r n,k2)

,

(28)
where k4

t = (1 − k2)(1 − k2
b). This solution can be considered

a discrete analog of Eq. (45) in the work [8]. It has been derived
in a quite different way in [24].

In the limit k → 0 and kb → 1, q becomes the back-
ground amplitude and m(t) → tanh(2q2 t). Then r = κ0 =
arccos(1/(1 + q2)) = k1g . The period along the t axis then
becomes infinite and the solution, Eq. (28), reduces to

ψn(t) = q
cos(r n) + i kt√

k
sinh(2q2 t)

kt√
k

cosh(2q2 t) − cos(r n)
ei2q2 t+iφ. (29)

Clearly,

kt√
k

=
√

2 + q2

1 + q2
,

so Eq. (29) agrees with Eq. (15).
In the opposite limiting case, k → 0, we obtain the soliton

solution from Eq. (28).

VII. CONCLUSION

We have derived first-order exact solutions of the Ablowitz-
Ladik equation using the AK ansatz that linearly relates the
real and imaginary parts of the solution. Each of the solutions
has a corresponding solution of the NLS equation, so related
physical phenomena can occur in systems governed by these
two equations.
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