28 research outputs found

    Control of Pyrethroid-Resistant Chagas Disease Vectors with Entomopathogenic Fungi

    Get PDF
    Chagas disease, also known as American Trypanosomiasis, is the most relevant parasitic disease in Latin America, being a major burden that affects mostly poor human populations living in rural areas. The kissing-bugs of the Triatominae family transmit the parasite Trypanosoma cruzi by infectious blood-sucking; Triatoma infestans is the vector of major relevance in the southern Cone of South America. Current control strategies, heavily based on residual insecticide spraying, are threatened by the emergence of pyrethroid-resistant bug populations. Furthermore, ensuring the long-term and sustainable control of this overwhelming disease remains a major challenge. Here we show the utility of a simple, low-cost, biological control methodology against T. infestans bugs, regardless of their susceptibility to pyrethroid insecticides. It is based on the understanding of the initial contact interactions between a mycoinsecticide agent—the fungus Beauveria bassiana—and the host defense barrier, the bug cuticle. The proposed methodology is also supported by present data showing a relationship between the triatomine cuticle width and its hydrocarbon surface components, with insecticide resistance. These results will help to provide a safe and efficient alternative to overcome pyrethroid-resilience of these noxious bugs. A high transfer potential to immediate application in rural communities located in remote areas inaccessible to sanitary control teams, and to the control of other Chagas disease vectors as well, is also envisaged
    corecore