6 research outputs found

    Modelisation par un mecanisme de diffusion-reaction-arrachement de la cinetique du nettoyage des depots formes sur les surfaces d'echange lors de la pasteurisation du lait

    No full text
    National audienc

    Cooperative coevolution for agrifood process modeling

    No full text
    On the contrary to classical schemes of evolutionary optimisations algorithms, single population Cooperative Co-evolution techniques (CCEAs, also called "Parisian" approaches) make it possible to represent the evolved solution as an aggregation of several individuals (or even as a whole population). In other words, each individual represents only a part of the solution. This scheme allows simulating the principles of Darwinian evolution in a more economic way, which results in gain in robustness and efficiency. The counterpart however is a more complex design phase. In this chapter, we detail the design of efficient CCEAs schemes on two applications related to the modeling of an industrial agri-food process. The experiments correspond to complex optimisations encountered in the modeling of a Camembert-cheese ripening process. Two problems are considered: A deterministic modeling problem, phase prediction, for which a search for a closed form tree expression is performed using genetic programming (GP). A Bayesian network structure estimation problem. The novelty of the proposed approach is based on the use of a two step process based on an intermediate representation called independence model. The search for an independence model is formulated as a complex optimisation problem, for which the CCEA scheme is particularly well suited. A Bayesian network is finally deduced using a deterministic algorithm, as a representative of the equivalence class figured by the independence model
    corecore