2 research outputs found
Factorization methods for Noncommutative KP and Toda hierarchy
We show that the solution space of the noncommutative KP hierarchy is the
same as that of the commutative KP hierarchy owing to the Birkhoff
decomposition of groups over the noncommutative algebra. The noncommutative
Toda hierarchy is introduced. We derive the bilinear identities for the
Baker--Akhiezer functions and calculate the -soliton solutions of the
noncommutative Toda hierarchy.Comment: 7 pages, no figures, AMS-LaTeX, minor corrections, final version to
appear in Journal of Physics
Explorations of the Extended ncKP Hierarchy
A recently obtained extension (xncKP) of the Moyal-deformed KP hierarchy
(ncKP hierarchy) by a set of evolution equations in the Moyal-deformation
parameters is further explored. Formulae are derived to compute these equations
efficiently. Reductions of the xncKP hierarchy are treated, in particular to
the extended ncKdV and ncBoussinesq hierarchies. Furthermore, a good part of
the Sato formalism for the KP hierarchy is carried over to the generalized
framework. In particular, the well-known bilinear identity theorem for the KP
hierarchy, expressed in terms of the (formal) Baker-Akhiezer function, extends
to the xncKP hierarchy. Moreover, it is demonstrated that N-soliton solutions
of the ncKP equation are also solutions of the first few deformation equations.
This is shown to be related to the existence of certain families of algebraic
identities.Comment: 34 pages, correction of typos in (7.2) and (7.5