122 research outputs found

    Multifractal burst in the spatio-temporal dynamics of jerky flow

    Full text link
    The collective behavior of dislocations in jerky flow is studied in Al-Mg polycrystalline samples subjected to constant strain rate tests. Complementary dynamical, statistical and multifractal analyses are carried out on the stress-time series recorded during jerky flow to characterize the distinct spatio-temporal dynamical regimes. It is shown that the hopping type B and the propagating type A bands correspond to chaotic and self-organized critical states respectively. The crossover between these types of bands is identified by a large spread in the multifractal spectrum. These results are interpreted on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001

    Correlation versus randomization of jerky flow in an AlMgScZr alloy using acoustic emission

    Get PDF
    International audienceJerky flow in solids results from collective dynamics of dislocations which gives rise to serrated deformation curves and a complex evolution of the strain heterogeneity. A rich example of this phenomenon is the Portevin-Le Chatelier effect in alloys. The corresponding spatiotemporal patterns showed some universal features which provided a basis for a well-known phenomenological classification. Recent studies revealed peculiar features in both the stress serration sequences and the kinematics of deformation bands in Al-based alloys containing fine microstructure elements, such as nanosize precipitates and/or submicron grains. In the present work, jerky flow of an AlMgScZr alloy is studied using statistical analysis of stress serrations and the accompanying acoustic emission. As in the case of coarse-grained binary AlMg alloys, the amplitude distributions of acoustic events obey a power-law scaling which is usually considered as evidence of avalanchelike dynamics. However, the scaling exponents display specific dependences on the strain and strain rate for the investigated materials. The observed effects bear evidence to a competition between the phenomena of synchronization and randomization of dislocation avalanches, which may shed light on the mechanisms leading to a high variety of jerky flow patterns observed in applied alloys

    Recurrence analysis of the Portevin-Le Chatelier effect

    Full text link
    Tensile tests were carried out by deforming polycrystalline samples of Al-2.5%Mg alloy at room temperature in a wide range of strain rates where the Portevin-Le Chatelier (PLC) effect was observed. The experimental stress-time series data have been analyzed using the recurrence analysis technique based on the Recurrence Plot (RP) and the Recurrence Quantification Analysis (RQA) to study the change in the dynamical behavior of the PLC effect with the imposed strain rate. Our study revealed that the RQA is able to detect the unique crossover phenomenon in the PLC dynamics.Comment: 17 pages, 3 figure

    Modeling and simulation of the Portevin-Le Chatellier effect

    Get PDF

    Unusual behavior of the Portevin - Le Chatelier effect in an AlMg alloy containing precipitates

    Get PDF
    Stress serration patterns and kinematics of deformation bands associated with the Portevin - Le Chatelier effect in an Al-Mg alloy were investigated by analyzing the evolution of the applied stress and axial strain distribution. In contrast to usually observed strain localization behaviors, referring to propagating and static deformation bands at high and low strain rates, respectively, the propagation mode was found to persist in a wide strain-rate rang

    Dislocation transport and intermittency in the plasticity of crystalline solids

    Get PDF
    International audienceWhen envisioned at the relevant length scale, plasticity of crystalline solids consists in the transport of dislocations through the lattice. In this paper, transport of dislocations is evidenced by experimental data gathered from high-resolution extensometry carried out on copper single crystals in tension. Spatiotemporal kinematic fields display spatial correlation through characteristic lines intermittently covered by plastic activity. Intermittency shows temporal correlation and power-law distribution of avalanche size. Interpretation of this phenomenon is proposed within the framework of a field dislocation theory attacking the combined problem of dislocation transport and long-range internal stress field development. Intermittency and transport properties show remarkable independence from sample size, aspect ratio, loading rate, and strain-rate sensitivity of the flow stress

    Interrelation between the Portevin Le-Chatelier effect and necking in AlMg alloys

    Get PDF
    Plastic flow instability caused by the Portevin Le-Chatelier (PLC) effect and its influence on the necking instability were studied in a binary and a precipitation-strengthened AlMg alloy using the digital image correlation (DIC) technique. Coarse-grained structure and two different finegrained states distinctly distinguished by dislocation density were produced in both alloys using similar routes of thermomechanical processin

    Scaling and complexity of stress fluctuations associated with smooth and jerky flow in a FeCoNiTiAl high-entropy alloy

    Full text link
    Recent observations of jerky flow in high-entropy alloys (HEA) revealed a high role of self-organization of dislocations in their plasticity. The present work reports first results of investigation of stress fluctuations during plastic deformation of a FeCoNiTiAl alloy, examined in a wide temperature range covering both smooth and jerky flow. These fluctuations, which accompany the overall deformation behavior representing an essentially slower stress evolution controlled by the work hardening, were processed using complementary approaches comprising the Fourier spectral analysis, the refined composite multiscale entropy, and multifractal formalisms. The joint analysis at distinct scales testified that even a macroscopically smooth plastic flow is accompanied with nonrandom fluctuations, disclosing self-organized dynamics of dislocations. Qualitative changes in such a fine-scale "noise" were found with varying temperature. The observed diversity is significant for understanding the relationships between different scales of plasticity of HEAs and crystal materials in general.Comment: 13 pages main body, 6 figures, 2 appendices, 65 citations (22 pages overall

    The hidden order behind jerky flow

    Get PDF
    Jerky flow, or the Portevin-Le Chatelier effect, is investigated at room temperature by applying statistical, multifractal and dynamical analyses to the unstable plastic flow of polycrystalline Al-Mg alloys with different initial microstructures. It is shown that a chaotic regime is found at medium strain rates, whereas a self-organized critical dynamics is observed at high strain rates. The cross-over between these two regimes is signified by a large spread in the multifractal spectrum. Possible physical mechanisms leading to this wealth of patterning behavior and their dependence on the strain rate and the initial microstructure are discussed
    corecore