4,912 research outputs found

    Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Get PDF
    Background: Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results: A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). Conclusion: This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    Statistical mechanics of Kerr-Newman dilaton black holes and the bootstrap condition

    Get PDF
    The Bekenstein-Hawking ``entropy'' of a Kerr-Newman dilaton black hole is computed in a perturbative expansion in the charge-to-mass ratio. The most probable configuration for a gas of such black holes is analyzed in the microcanonical formalism and it is argued that it does not satisfy the equipartition principle but a bootstrap condition. It is also suggested that the present results are further support for an interpretation of black holes as excitations of extended objects.Comment: RevTeX, 5 pages, 2 PS figures included (requires epsf), submitted to Phys. Rev. Let

    Statistical Mechanics of Black Holes

    Full text link
    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.Comment: 21 page

    Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves

    Get PDF
    In this paper we analyze the perturbations of the Kerr-Newman dilatonic black hole background. For this purpose we perform a double expansion in both the background electric charge and the wave parameters of the relevant quantities in the Newman-Penrose formalism. We then display the gravitational, dilatonic and electromagnetic equations, which reproduce the static solution (at zero order in the wave parameter) and the corresponding wave equations in the Kerr background (at first order in the wave parameter and zero order in the electric charge). At higher orders in the electric charge one encounters corrections to the propagations of waves induced by the presence of a non-vanishing dilaton. An explicit computation is carried out for the electromagnetic waves up to the asymptotic form of the Maxwell field perturbations produced by the interaction with dilatonic waves. A simple physical model is proposed which could make these perturbations relevant to the detection of radiation coming from the region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS file, submitted to Phys. Rev.
    • …
    corecore