6,156 research outputs found

    Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    Get PDF
    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Full text link
    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure

    Statistical Mechanics of Black Holes

    Full text link
    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.Comment: 21 page

    Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    Get PDF
    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system

    Complete unitary qutrit control in ultracold atoms

    Full text link
    Physical quantum systems are commonly composed of more than two levels and offer the capacity to encode information in higher-dimensional spaces beyond the qubit, starting with the three-level qutrit. Here, we encode neutral-atom qutrits in an ensemble of ultracold 87^{87}Rb and demonstrate arbitrary single-qutrit SU(3) gates. We generate a full set of gates using only two resonant microwave tones, including synthesizing a gate that effects a direct coupling between the two disconnected levels in the three-level Λ\Lambda-scheme. Using two different gate sets, we implement and characterize the Walsh-Hadamard Fourier transform, and find similar final-state fidelity and purity from both approaches. This work establishes the ultracold neutral-atom qutrit as a promising platform for qutrit-based quantum information processing, extensions to dd-dimensional qudits, and explorations in multilevel quantum state manipulations with nontrivial geometric phases.Comment: 5 pages and 4 figures, plus 7 pages supplementary material. Updated to published version, journal reference now include
    corecore