7 research outputs found

    In Vitro Antimalarial Activity of a New Organometallic Analog, Ferrocene-Chloroquine

    No full text
    The in vitro activities of new organometallic chloroquine analogs, based on 4-amino-quinoleine compounds bound to a molecule of ferrocene, were evaluated against chloroquine-susceptible, chloroquine-intermediate, and chloroquine-resistant, culture-adapted Plasmodium falciparum lineages by a proliferation test. One of the ferrocene analogs totally restored the activity of chloroquine against chloroquine-resistant parasites. This compound, associated with tartaric acid for better solubility, was highly effective. The role of the ferrocene in reversing chloroquine resistance is discussed, as is its potential use for human therapy

    In vitro antiplasmodial activity and cytotoxicity of extracts and fractions of Vitex madiensis, medicinal plant of Gabon.

    No full text
    International audienceVitex madiensis Oliv. (Lamiaceae) is traditionally used to treat malaria symptoms in Haut-OgoouĂ©, Gabon. Leaves and stem barks extracts were obtained using dichloromethane (CH(2)Cl(2)), ethyl acetate (EtOAc) and methanol (MeOH) as extraction solvents and fractionated on silica gel column. The in vitro antiplasmodial activity of CH(2)Cl(2), EtOAc and MeOH extracts and fractions was evaluated against the chloroquine-resistant FCB strain and field isolates of Plasmodium falciparum using the DELI test. The cytotoxicity of the extracts was tested on MRC-5 and THP1 cells using the tetrazolium salt MTT colorimetric assay, and the selectivity index (SI) of each extract was calculated. CH(2)Cl(2) extract, the EA1 fraction from EtOAc extract of stem barks and cyclohexane (L(cycl)), dichloromethane (L(DM)) and butanol (L(but)) fractions from MeOH/H(2)O extract of leaves exhibited the highest in vitro antiplasmodial activity on FCB strain and field isolates (IC(50) from 0.53 to 4.87 Όg/ml) with high selectivity index (of 20.15-1800). These data support the use of V. madiensis in malaria treatment along with continued investigations within traditional medicines in the search of new antimalarial agents. The EA1, C(6)H(12) and CH(2)Cl(2) fractions could be selected for future investigation or/and for the treatment of malaria symptoms after standardization
    corecore