256 research outputs found

    Improving Sea Level Reconstructions Using Non-Sea Level Measurements

    Get PDF
    We present a new method for reconstructing sea level involving cyclostationary empirical orthogonal functions (CSEOFs). While we show results from a CSEOF reconstruction using basis functions computed from satellite altimetry and subsequently fit to tide gauge data, our focus is on how other ocean observations such as sea surface temperature can be leveraged to create an improved reconstructed sea level data set spanning the time period from 1900 to present. Basis functions are computed using satellite measurements of sea surface temperature, and using a simple regression technique, these basis functions are transformed to represent a similar temporal evolution to corresponding satellite altimeter-derived sea level basis functions. The resulting sea level and sea surface temperature basis functions are fit to tide gauge data and historical sea surface temperature data, respectively, to produce a reconstructed sea level data set spanning the period from 1900 to present. We demonstrate the use of this reconstructed data set for climate monitoring, focusing primarily on climate signals in the Pacific Ocean. The CSEOF reconstruction technique can be used to create indices computed solely from sea level measurements for monitoring signals such as the eastern Pacific (EP) El Nio-Southern Oscillation (ENSO), Central Pacific (CP) ENSO, and Pacific Decadal Oscillation (PDO). The EP ENSO, CP ENSO, and PDO signals are all well represented in the CSEOF reconstruction relying solely on sea level measurements from 1950 to present; however, significant improvement can be made in reconstructing these signals during the first half of the twentieth century by including sea surface temperature measurements in the sea level reconstruction procedure

    The Correspondence between Linguistic Tone and Musical Melody

    Get PDF
    Proceedings of the Ninth Annual Meeting of the Berkeley Linguistics Society (1983), pp. 148-15

    Loop Current Eddy Formation and Baroclinic Instability

    Get PDF
    The formation of three Loop Current Eddies, Ekman, Franklin, and Hadal, during the period April 2009 through November 2011 was observed by an array of moored current meters and bottom mounted pressure equipped inverted echo sounders. The array design, areal extent nominally 89° W to 85° W, 25° N to 27° N with 30–50 km mesoscale resolution, permits quantitative mapping of the regional circulation at all depths. During Loop Current Eddy detachment and formation events, a marked increase in deep eddy kinetic energy occurs coincident with the growth of a large-scale meander along the northern and eastern parts of the Loop Current. Deep eddies develop in a pattern where the deep fields were offset and leading upper meanders consistent with developing baroclinic instability. The interaction between the upper and deep fields is quantified by evaluating the mean eddy potential energy budget. Largest down-gradient heat fluxes are found along the eastern side of the Loop Current. Where strong, the horizontal down-gradient eddy heat flux (baroclinic conversion rate) nearly balances the vertical down-gradient eddy heat flux indicating that eddies extract available potential energy from the mean field and convert eddy potential energy to eddy kinetic energy

    Cyclostationary Empirical Orthogonal Function Sea-Level Reconstruction

    Get PDF
    Since 1993, satellite altimetry has provided accurate measurements of sea surface height with near-global coverage. These measurements led to the first definitive estimates of global mean sea-level (GMSL) rise and have improved understanding of how sea levels are changing regionally at decadal time scales. These relatively short records, however, provide no information about the state of the ocean prior to 1993, and with the modern altimetry record spanning only 20 years, the lower frequency signals that are known to be present in the ocean are difficult or impossible to resolve. Tide gauges, on the other hand, have measured sea level over the last 200 years, with some records extending back to 1807. While providing longer records, the spatial resolution of tide gauge sampling is poor, making studies of the large-scale patterns of ocean variability and estimates of GMSL difficult. Combining the satellite altimetry with the tide gauges using a technique known as sea-level reconstruction results in a data set with the record length of the tide gauges and the near-global coverage of satellite altimetry. Cyclostationary empirical orthogonal functions (CSEOFs), derived from satellite altimetry, are combined with historical sea-level measurements from tide gauges to create the Reconstructed Sea Level data set spanning from 1950 to 2009. Previous sea-level reconstructions have utilized empirical orthogonal functions (EOFs) as basis functions, but by using CSEOFs and by addressing other aspects of the reconstruction procedure, an alternative sea-level reconstruction can be computed. The resulting reconstructed sea-level data set has weekly temporal resolution and half-degree spatial resolution

    Reconstructing Sea Level Using Cyclostationary Empirical Orthogonal Functions

    Get PDF
    Cyclostationary empirical orthogonal functions, derived from satellite altimetry, are combined with historical sea level measurements from tide gauges to reconstruct sea level fields from 1950 through 2009. Previous sea level reconstructions have utilized empirical orthogonal functions as basis functions, but by using cyclostationary empirical orthogonal functions and by addressing other aspects of the reconstruction procedure, an alternative sea level reconstruction can be computed. The procedure introduced here is capable of capturing the annual cycle and El Nio-Southern Oscillation (ENSO) signals back to 1950, with correlations between the reconstructed ENSO signal and common ENSO indices found to be over 0.9. The regional trends computed from the new reconstruction show good agreement with the trends obtained from the satellite altimetry, but some discrepancies are seen when comparing with previous sea level reconstructions over longer time periods. The computed rate of global mean sea level rise from the reconstructed time series is 1.97 mm/yr from 1950 to 2009 and 3.22 mm/yr from 1993 to 2009

    Contribution of the Pacific Decadal Oscillation to Global Mean Sea Level Trends

    Get PDF
    Understanding and explaining the trend in global mean sea level (GMSL) have important implications for future projections of sea level rise. While measurements from satellite altimetry have provided accurate estimates of GMSL, the modern altimetry record has only now reached 20 years in length, making it difficult to assess the contribution of decadal to multidecadal climate signals to the global trend. Here, we use a sea level reconstruction to study the 20 year trends in sea level since 1950. In particular, we show that the Pacific Decadal Oscillation (PDO) contributes significantly to the 20 year trends in GMSL. We estimate the PDO contribution to the GMSL trend over the past 20 years to be approximately 0.49 ± 0.25 mm/year and find that removing the PDO contribution reduces the acceleration in GMSL estimated over the past 60 years. Key Points The PDO has contributed 0.49 mm/yr to the current altimetry GMSL trend The PDO has a large impact on regional and global sea level trends Reconstructions allow for the study of decadal-scale climate variability

    Ship and Satellite Studies of Mesoscale Circulation and Sperm Whale Habitats in the Northeast Gulf of Mexico During GulfCet II

    Get PDF
    Eighty-three encounters with sperm whales (Physeter macrocephalus) occurred on two cruises that made expendable bathythermograph + conductivity-temperature-depth surveys of cyclone-anticyclone eddy pairs in the Northeast Gulf of Mexico (NEGOM). In late summer 1996, 41 sightings of sperm whales were made and 10 acoustic contacts were registered. Of these 51 encounters, 90% were in a cyclonic area of lower than average dynamic height offshore that was surveyed from space by near-real-time altimetric sea surface height anomaly and then mapped in high resolution with shipboard measurements or within 100 km of SW Pass of the Mississippi River. In midsummer 1997, 23 sightings and nine acoustic contacts were made. Of these 32 encounters, 81% were in an offshore cyclonic area of lower than average dynamic height or within 100 km of the mouth of the Mississippi River. Time series animation of the 1996 and 1997 altimetric data indicated these cyclones are typically associated with Loop Current excursions into the NEGOM and that the two cyclones we surveyed had spun up 4-6 mo previous to our fieldwork. Although cyclones in the NEGOM are temporally persistent, their geographic location is spatially variable: the cyclone surveyed in 1996 was centered 150-200 km south and east of the Mississippi River delta in water 2-3 km deep, whereas that surveyed in 1997 was centered farther east in water 2-3 km deep over DeSoto Canyon. Sperm whales appear to have affinity for cyclonic eddies because the largest numbers of encounters with sperm whales also shifted east in 1997 compared with 1996

    The Effect of the El Nino-Southern Oscillation on U.S. Regional and Coastal Sea Level

    Get PDF
    Although much of the focus on future sea level rise concerns the long-term trend associated with anthropogenic warming, on shorter time scales, internal climate variability can contribute significantly to regional sea level. Such sea level variability should be taken into consideration when planning efforts to mitigate the effects of future sea level change. In this study, we quantify the contribution to regional sea level of the El Niño-Southern Oscillation (ENSO). Through cyclostationary empirical orthogonal function analysis (CSEOF) of the long reconstructed sea level data set and of a set of U.S. tide gauges, two global modes dominated by Pacific Ocean variability are identified and related to ENSO and, by extension, the Pacific Decadal Oscillation. By estimating the combined contribution of these two modes to regional sea level, we find that ENSO can contribute significantly on short time scales, with contributions of up to 20 cm along the west coast of the U.S. The CSEOF decomposition of the long tide gauge records around the U.S. highlights the influence of ENSO on the U.S. east coast. Tandem analyses of both the reconstructed and tide gauge records also examine the utility of the sea level reconstructions for near-coast studies
    • …
    corecore