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Loop Current Eddy Formation and Baroclinic

Instability
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aGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode
Island USA

bLeidos Inc. Raleigh, North Carolina, USA.
c Department of Aerospace Engineering Sciences, University of Colorado Boulder,

Boulder, Colorado, USA.

Abstract

The formation of three Loop Current Eddies, Ekman, Franklin, and Hadal,

during the period April 2009 through November 2011 was observed by an

array of moored current meters and bottom mounted pressure equipped in-

verted echo sounders. The array design, areal extent nominally 89◦W to

85◦W, 25◦N to 27◦N with 30-50 km mesoscale resolution, permits quantita-

tive mapping of the regional circulation at all depths. During Loop Current

Eddy detachment and formation events, a marked increase in deep eddy ki-

netic energy occurs coincident with the growth of a large-scale meander along

the northern and eastern parts of the Loop Current. Deep eddies develop in a

pattern where the deep fields were offset and leading upper meanders consis-

tent with developing baroclinic instability. The interaction between the upper

and deep fields is quantified by evaluating the mean eddy potential energy

budget. Largest down-gradient heat fluxes are found along the eastern side
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of the Loop Current. Where strong, the horizontal down-gradient eddy heat

flux (baroclinic conversion rate) nearly balances the vertical down-gradient

eddy heat flux indicating that eddies extract available potential energy from

the mean field and convert eddy potential energy to eddy kinetic energy.

Keywords:

Highlights:

• Large Loop Current meanders develop prior to separation as deep eddy

energy grows

• A train of upper-deep eddy interactions leads to each Loop Current

Eddy separation

• Deep eddies develop in a pattern consistent with baroclinic instability

• Mean eddy potential energy budget is evaluated with observations

• Horizontal downgradient eddy flux drives eddy kinetic energy

1. Introduction1

The Loop Current (LC) dominates the circulation in the Gulf of Mexico.2

As part of the North Atlantic western boundary current system, it enters the3

Gulf through the Yucatan Channel and exits through the Straits of Florida.4

While the shortest circuit within Gulf is a port-to-port mode along the north-5

ern Cuban coast, the LC can penetrate the Gulf as far north as 28◦N and as6

far west as 93◦W, expanding in area by a factor of 4 from the port-to-port7

mode during its northward advancement (Leben, 2005). Its influence extends8
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to the far western Gulf due to the formation of large anticyclonic rings known9

as Loop Current Eddies (LCE). On an irregular time interval a LCE pinches10

off from the LC and migrates westward in the Gulf, the time interval between11

separations can be as rapid as a few weeks or as long as 18 months (Vukovich12

and Maul, 1985; Sturges and Leben, 2000; Leben, 2005). The LCE separation13

process is not readily predictable, although an empirical linkage between re-14

treat latitude and subsequent separation time has been found (Leben, 2005;15

Alvera-Azcárate et al., 2009). Complex and multi-scale circulation is asso-16

ciated with the LCE formation (Sturges and Leben, 2000). The separation17

cycle often exhibits a series of detachments and reattachments before the18

final separation (see, for example, the LCE Franklin formation discussed in19

Liu et al. (2011b)). Frontal eddies and meanders along the periphery of the20

LC are present during separation (Cochrane, 1972; Vukovich and Maul, 1985;21

Fratantoni et al., 1998; Zavala-Hidalgo et al., 2003). The LC’s influence ex-22

tends beyond the depth of its surface-intensified core. Through interaction23

with topography and LCE generation, the LC provides the primary forcing24

of deep circulation. It has been hypothesized that deep energy generated25

beneath the LC during LCE separation radiates away from its source to the26

Gulf’s boundary either as linear waves or eddies (Hamilton, 2009). At the27

boundary, steep escarpments act to focus this deep energy into narrow swift28

boundary currents (Oey and Lee, 2002; Oey, 2008).29

Although qualitative analysis of surface fields has led to a classification30

of separation modes based upon the juxtaposition of cyclonic eddies and LC31

position within the Gulf (Schmitz, 2005), to date no theoretical framework32

fully explains LCE formation. Pichevin and Nof (1997) and Nof and Pichevin33

3



(2001) show that in order to conserve momentum, an anticyclonic eddy forms34

as the northward flowing LC turns eastward and realistic numerical mod-35

els have demonstrated this process (Chérubin et al., 2005; Chang and Oey,36

2011). Numerical studies highlight the role of instability and LC-topographic37

interactions in LCE formation e.g. Hurlburt and Thompson (1980); Hurlburt38

(1986); Welsh and Inoue (2000); Oey (2008); Chérubin et al. (2006); Le Hénaff39

et al. (2012). Essential in these studies are the feedbacks between upper and40

deep circulation. Hurlburt (1986) and Oey (2008) suggested that the region41

north of Campeche Bank is an important area for generation of deep eddies.42

Large mean-to-eddy energy conversion rates appear along the western edge43

of the Loop Current as the current moves off the relatively shallow western44

slope of the Yucatan Channel into the deep topography of the Gulf. Eddies45

propagate upstream along the Loop Current, grow in strength off the west46

Florida Slope and participate in the LC’s necking-down that precedes LCE47

separation (Oey, 2008). In the Gulf of Mexico literature “necking-down” is48

often used to describe the spatial configuration where one or more adjacent49

LC cyclones appear to pinch together the sides of an extended LC below50

a developing LCE giving the LC a neck-like feature, e.g. Schmitz (2005).51

Chérubin et al. (2005) showed that a baroclinically unstable vortex generates52

a vigorous deep eddy field whose interaction with the LC becomes increas-53

ingly complex when realistic Gulf topography is included. More recently, the54

simulations in Le Hénaff et al. (2012) show that as frontal cyclones propa-55

gate over the Mississippi Fan, a coupled upper-deep cyclone pair develops56

that ultimately facilitates the LCE shedding process. Several studies have57

suggested linkage between the passage of cyclonic eddies from the Caribbean58
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through Yucatan Channel to subsequent LCE separation (Oey et al., 2003;59

Oey, 2004; Athié et al., 2012; Huang et al., 2013).60

To address the need for full-water column observations during the full61

eddy shedding cycle in order to improve the dynamical understanding of how62

the LC interacts with and drives deep circulation, an array of twenty-five in-63

verted echo sounders with pressure gauges (PIES), nine full-depth moorings64

and seven near-bottom moorings was deployed April 2009 and recovered in65

October-November 2011 as part of the Dynamics of the Loop Current in US66

Waters Study (Figure 1). Three LCEs formed during the 30-month deploy-67

ment, Ekman, Franklin, and Hadal (Figure 2). The array spanned 89◦W68

to 85◦W, 25◦N to 27◦N with 30-50 km mesoscale resolution. This permits69

quantitative mapping of the regional circulation during the LCE separation70

events. Hamilton et al. (2015), this volume, provides a review of the ex-71

periment and Hamilton et al. (2014) gives a detailed description of the field72

operations and data processing.73

We note that the Deepwater Horizon oil-spill event occurred in spring-74

summer 2010 and coincided in time with Eddy Franklin’s formation. (The75

Deepwater Horizon platform, 88.39◦N, 28.74◦N, was located well to the north,76

230 km from the northwesternmost edge of the array discussed in this work.)77

Considerable efforts were made during that time period to rapidly acquire and78

analyze oceanographic observations as well to focus and improve modeling79

studies. A thorough review of the subsequent literature is beyond the scope80

of this study, as a starting point, the reader is referred to the dedicated81

monograph, ‘Monitoring and Modeling the Deepwater Horizon Oil Spill: A82

Record-Breaking Enterprise’ (Liu et al., 2011a) which provides a thorough83
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synopsis of those initial efforts and in particular the studies of Walker et al.84

(2011); Liu et al. (2011b); Shay et al. (2011); Hamilton et al. (2011) which85

focus on large and meso-scale circulation in spring-summer 2010.86

This paper focuses upon the coupling between the upper and deep circula-87

tion during LCE formation. We describe the data set in Section 2, statistics88

related to the deep circulation are provided in Section 3; case studies of89

upper-deep coupling for the three eddy events are shown Section 4; the mean90

potential energy budget is diagnosed in Section 5, and the paper concludes91

with a discussion and conclusion in Sections 6 and 7.92

2. Data93

The observational array consists of nine tall moorings, seven short moor-94

ings and twenty-five PIES. The suite of instrumentation on the tall moor-95

ings includes an upward-looking 75-kHz acoustic Doppler current profiler at96

450 m depth and point current meters at 600, 900, 1300, 2000 m depth and97

100 m above the bottom as well as temperature recorders placed at 75, 150,98

250, 350, 525, 750, 1100, 1500 m depth. Short moorings have one current99

meter positioned 100 m above the bottom. The PIES, moored at the sea100

floor, emits 12 kHz sound pulses and measures the round trip acoustic travel101

times, τ , of these acoustic pulses from sea floor to sea surface, and a pressure102

gauge contained within the instrument’s housing measures bottom pressure.103

Sampling frequency from the multiple sensors varies from minutes to hours.104

Here we utilize time series that have been 72-hour low pass filtered with a105

fourth order Butterworth filter and subsampled at 12-hour intervals. The106

Loop Current Study had excellent data return: 100% PIES and 94% tall107
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and short moorings. A detailed description of instrumentation and standard108

processing is provided in Hamilton et al. (2014).109

Using empirically-derived look-up tables between τ and historical hydrog-110

raphy (a so-called GEM field, Meinen and Watts (2000)), vertical profiles of111

temperature, salinity, and density are estimated. Hamilton et al. (2014) and112

Donohue et al. (2015) discuss specific treatment of this methodology to the113

Gulf. Application of objective analysis yields 4-dimensional maps of temper-114

ature, salinity, density, and geostrophic streamfunction at 12-hour intervals.115

An example of the mapped products for June 24, 2009 is shown in Figure 3.116

The vector sums of mapped baroclinic velocity profiles (geostrophic velocities117

referenced to zero at 3000 dbar, subscript bcb) plus deep reference velocities118

(subscript ref ) give the estimated absolute geostrophic velocities throughout119

the water column. Absolute sea surface heights, SSH, are also determined.120

First, 3000-dbar pressures are converted to their height equivalent (leveled121

pressure anomaly divided by gravity and density). We term this component122

the reference level sea surface height (SSHref ). Second, surface geopotentials123

referenced to 3000 dbar are converted to their height equivalent (geopotential124

divided by gravity). Geopotential height is estimated from the GEM fields125

combined with measured τ . We term this component the baroclinic SSH126

referenced to the bottom (SSHbcb). The bcb and the ref contributions to sea127

surface height are combined to yield absolute sea surface height. Equations128

1-3 summarize the SSH calculation,129

SSHref =
pref
ρbg

, (1)

SSHbcb =
φbcb

g
, (2)
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SSHabs = SSHref + SSHbcb, (3)

where g is gravity, ρb is mean bottom density, φbcb is geopotential referenced130

to 3000 dbar, and pref are the 3000-dbar pressures. This decomposition131

of SSH has been successfully applied with PIES in other strong western132

boundary current systems such as the Agulhas (Baker-Yeboah et al., 2009),133

the Kuroshio Extension (Park et al., 2012), and the Antarctic Circumpolar134

Current (Behnisch et al., 2013).135

Extensive intercomparison between mapped fields and point measure-136

ments indicates that the PIES methodology works well in this region. Details137

and comparison figures are provided in Hamilton et al. (2014) and Donohue138

et al. (2015), this volume. Briefly, temperature comparisons, for the nine139

tall moorings at 9 depth levels reveal correlation coefficients greater than140

0.92 at all depths, and greater than 0.975 at all sites for depths between 250141

and 750 m, indicating that the PIES capture more than 95% of variance.142

Rms differences are near 0.6◦C at 250 m depth and decrease to 0.23◦C at143

900 m depth. PIES-mapped currents were compared to mooring currents at144

six nominal depths. Correlation coefficients are above 0.89, especially within145

the thermocline. Rms differences are less than 10 cm s−1 everywhere and de-146

crease to less than 5 cm s−1 below 600 m depth. PIES SSH and along-track147

Jason-2 altimeter SSH also compare well, correlation coefficients are above148

0.95. Comparisons with along-track Jason-2 altimeter SSH anomaly confirm149

an estimated PIES SSH error of 5.7 cm.150

To place the array in the larger regional context, we take advantage of151

mapped satellite altimeter data. LCE separation times and LC area as well152

as the mapped fields are determined from the Colorado Center for Atmo-153
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spheric Research (CCAR) Gulf of Mexico (GOM) objectively mapped his-154

torical mesoscale altimeter data reanalysis. These products use the quick-155

look mesoscale processing system (Leben et al., 2002) based on RADS 3.0156

archive. Gridding uses a multigrid Cressman objective analysis of all avail-157

able altimeter data. The satellite altimeter data used to produce the his-158

torical reanalysis during the observational program include Jason-1, Envisat,159

and OSTM/Jason-2. A detailed description of the processing of the GOM160

SSH dataset can be found in Hamilton et al. (2014). Detachment of LCEs161

from the LC is identified by the breaking of the 17-cm SSH contour in the162

CCAR GOM historical SSH data product. In this product, the 17-cm SSH163

contour closely tracks the core of the LC that enters through the Yucatan164

Channel and exits through the Florida Straits (Leben, 2005). Dukhovskoy165

et al. (2015) provides an evaluation of the tracking technique.166

3. Deep statistics167

In contrast to the broad anticyclonic mean flow observed in the upper168

ocean (Figure 4a), the mean deep circulation exhibits more structure (Figure169

4b). Along the western side of the array, a deep mean anticyclonic gyre with170

∼ 200 km lateral extent is centered near 26.3◦N 87.3◦W with mean speeds171

near 6 cm s−1. In the east, there is a deep mean cyclonic gyre positioned172

near 26.2◦N 85.7◦W with speeds near 3 cm s−1. Along the southern boundary173

of the array, mean deep flow is to the north and west. Standard deviation174

ellipses are mainly isotropic except at the mooring closest to the west Florida175

Shelf where the ellipse is elongated and parallel to the slope. Elevated time-176

mean eddy kinetic energy (EKE) is found beneath the mean position of the177

9



LC. This swath of high EKE can be traced from the Mississippi Fan, where178

it is offset slightly to the north of the mean LC position, across the array179

to the southeast, where the EKE maximum lies slightly west of the mean180

LC. Array-averaged EKE shows the influence of the LC (Figure 4, panels181

c,d ). Enhanced EKE occurs during LCE shedding events. During Ekman,182

Franklin, and Hadal, peak EKE occurs at or near the first eddy detachment.183

An additional EKE peak occurs in June 2011, during this time, the LC necks184

down but does not form an eddy. During LC eddy detachment and formation185

events, a marked increase in deep eddy kinetic energy occurs (Figures 4d)186

coincident with the development of a large-scale meander along the northern187

and eastern parts of the LC (Figure 2).188

Mesoscale variance distribution as a function of frequency also differs be-189

tween the upper and deep ocean. The discussion will treat variance whereas190

Figure 5 displays standard deviation. Note the range choices for the fre-191

quency bands shown in Figure 5 are based upon spectral peaks shown in192

Figure 6. Upper-ocean variance is dominated by the low-frequency lateral193

movement of the LC in and out of the array during LC eddy shedding cycles,194

and only 14% of the variance is in periods shorter than 100 days (Dono-195

hue et al., 2015). There is proportionally more deep variance in the high-196

frequency bands (Figure 5): 72 % of the deep variance is in periods shorter197

than 100 days. Within the 100- to 3-day mesoscale band, deep variance is198

distributed as follows: 57% within 100 to 40 day, 30% within 40 to 20 day,199

13% within 20 to 3 day. Similar to the upper ocean, the spatial structure200

of the deep variance changes as a function of frequency band (Figure 5).201

Within the highest frequency band, 20 to 3 days, elevated values occur along202
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the base of the Mississippi Fan in the northwest portion of the array. As203

frequency decreases, this ridge of high variance shifts to the southeast within204

the array. In the lowest frequency band, 100 to 40 days, the spatial pattern205

resembles the time-mean EKE (Figure 4).206

A signature of growing baroclinic instability events is a vertical phase207

tilt: along the direction of propagation, with deep fields leading upper fields.208

Consequently, at a fixed location, deep leads upper in time also. To in-209

vestigate vertical coupling, the coherences and phases between upper and210

deep streamfunctions (SSHbcb and SSHref , respectively) are estimated using211

the averaged periodogram method of Welch (1967) (256-day length segment212

with 50% overlap). Upper and deep streamfunctions are coherent over large213

portions of the array for frequencies between 1/64 d-1 and 1/32 d-1. Fig-214

ure 7 shows the spatial pattern of coherence and phase for three frequencies215

within this band. A tongue of high coherence extends from the northeast216

trending south-southwest toward the central portion of the array where the217

three LCE’s separated. Two additional peaks occur, one near the base of218

the Mississippi Fan and another in the southeastern corner. Where statisti-219

cally coherent, the phase offset is such that the deep leads the upper. Phase220

estimates range between 60 and 150 degrees. Frequencies outside the band221

1/64 d-1 and 1/32 d-1 do not show statistically significant coherence between222

upper and deep.223

4. Case Studies224

The preceding spectral approach characterizes the overall mean statistics,225

yet each LC eddy shedding event is unique, e.g., location of final separation,226
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number of brief detachments that precede the separation, location of the LC227

regarding bottom topography and what portion was mapped by the array228

(Figure 2). To illustrate the evolution of LC eddy-shedding events and the229

relationship between upper and deep, maps of upper and deep streamfunc-230

tion are plotted at short time intervals (four-to-five days). In each case study,231

mapped baroclinic SSH referenced to the bottom (SSHbcb, filled colored con-232

tours) is embedded within altimetric SSH that covers the broader region. The233

17-cm contour denotes the location of the LC and LC-eddy fronts. Mapped234

SSHref reveals the presence of deep cyclones (blue contours) and deep anti-235

cyclones (red contours). Two sets are provided for each shedding event: full236

frequency (3-day low-pass), and 100 to 40-day band pass fields (Figures 8 - 9237

for Ekman, Figures 10 - 11 for Franklin and Figures 12 - 13 for Hadal). The238

following discussion focuses upon the 100 to 40 day band in which coherence239

between upper and deep is found to be high.240

Eddy Ekman: 4 May to 4 October 2009. A long-wavelength meander devel-241

ops along the northern edge of the LC in early July (Figure 8). Perturbations242

in the deep field begin to appear in early May and intensify in late July. The243

4 July map depicts two deep eddies labeled as cyclone A and anticyclone244

B (Figure 9). These two deep eddies are positioned on this date such that245

the deep anticyclone B leads an upper high, and the deep cyclone A slightly246

leads an upper low. This classic pattern associated with baroclinic instabil-247

ity remains with varying vertical phase-tilt as the meander and deep eddies248

propagate together anticyclonically along the LC periphery from 4 July to249

25 August. While the amplitude of deep cyclone A remains nearly constant250

during this interval, deep anticyclone B’s strength modulates. Anticyclone251
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B intensifies from 8 to 20 July, remains constant in strength until 28 July,252

then weakens over the next 10 days. A slight re-amplification occurs 25 Au-253

gust. On 24 July (Figure 9), another deep cyclone labeled C, located on the254

Mississippi Fan, begins to develop. It is positioned slightly downstream of a255

developing upper trough. This trough and deep cyclone C jointly intensify 24256

July through 21 August. During this interval, the trough deepens to nearly257

pinch off the neck of the LC, and the vertical phase tilt gets smaller as deep258

cyclone C becomes nearly vertically aligned under the trough. By 29 August,259

the phasing of deep leading upper no longer exists, Eddy Ekman is nearly260

separated, and deep cyclone C has weakened and subsequently propagates261

southwestward out of the array.262

Eddy Franklin: 11 April to 13 September 2010. Similar to Eddy Ekman,263

during the formation of Eddy Franklin, the signature vertical phase tilts of264

baroclinic instability are present. This case study includes upper and deep265

events leading to an eddy detachment in early July 2010 and final separation266

in early August 2010 (Figure 10). Consider the large-scale LC meander that267

is developing in early May 2010. The 11 May map (Figure 11) shows two268

deep eddies, anticyclone A and cyclone B. They are positioned such that the269

deep anticyclone resides downstream of and leads the upper crest. The deep270

cyclone B resides upstream of that upper crest, and in subsequent days (5271

June to 25 June) cyclone B intensifies as it leads a developing upper trough272

within the array. Anticyclone C comes into view 5 June with an upper273

crest following close behind it. During June, the B and C deep eddies and274

their slightly trailing upper meander trough and crest propagate downstream275

around the Loop. The trough and deep eddy B jointly intensify, and by early276
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July (Figure 11) the LC neck pinches off into a short-lived detachment. The277

30 June map shows three deep eddies; a deep cyclone, labeled D, appears278

near the Mississippi Fan. The northern limit of the array leaves the question279

open as to whether these deep eddies (A, B, C or D) initially propagate280

into the array from further north, or whether they originate upstream along281

the LC front. During July, deep eddies C and D and their slightly trailing282

upper meander crest and trough propagate downstream around the LC. For283

example, on 10 and 15 July 2010, the vertical phase tilt is evident, and284

the features jointly intensify. Eventually, the trough ‘necks down’ again,285

and eddy separation occurs in August. The recurrent structure observed286

in these map sequences is that as deep eddies propagate through the array287

they lead their upper counterpart and this leads to joint amplification. For288

example, from 5 June to 10 July (Figure 11), deep cyclone B leads an upper289

cyclone (trough); from 15 July to 4 August, deep anticyclone C leads an upper290

anticyclone. Finally, we note that during the Franklin event, the largest291

amplitude deep eddies occur during the early to mid-July detachment, prior292

to the final separation of a relatively small LC eddy in August.293

Eddy Hadal: 9 March to 11 August 2011. Upper-deep coupling with the ver-294

tical phase tilt of baroclinic instability also characterizes the Hadal shedding295

cycle. Figure 12, shows that during Hadal, long-wavelength meanders de-296

velop along the eastern side of an extended LC. The eastern side of the LC297

runs through the middle of the array during much of this time, and the associ-298

ated deep eddies are relatively well centered within the observational window.299

This case study will follow a sequence of four deep eddies, anticyclones A and300

C, and cyclones B and D (Figure 13). As seen in our Ekman and Franklin301

14



case studies, while these deep eddies translate along the LC, they lead their302

upper counterpart as they jointly develop and tend to constrict the neck. For303

example, on 13 April, deep anticyclone A sits just downstream of an upper304

crest (high SSHbcb), and during the subsequent 15 days the upper and deep305

highs jointly intensify. Shortly after that, on 3 May deep cyclone B leads an306

upper trough (low SSHbcb), and both intensify during the subsequent 20 days.307

Immediately following that, on 23 May, the deep anticyclone C leads an up-308

per crest downstream, intensifying during the next 20-30 days to about 22309

June. Deep-cyclone D follows this train of upper-deep coupling interactions.310

From 22 June to 17 July 2011 deep-cyclone D leads and jointly develops with311

an upper low SSHbcb and trough, constricting the LC neck greatly. Shortly312

afterward Hadal separates. Limits to the growth phase of the upper and313

deep perturbations appear to occur when the deep eddy trajectory turns to314

the southwest, not following the downstream path of the upper jet. Subse-315

quently, their vertical phase tilt becomes non-conducive to baroclinic insta-316

bility, and they jointly decay. Deep-cyclone B decays after 28 May together317

with its upper-strong low. Analogously deep-anticyclone C decays after 22318

June together with its upper strong high. Similar to the Franklin event, large319

amplitude deep eddies and joint intensification (mid-April through late June)320

occur prior to the final eddy separation (mid-August).321

5. Eddy Potential Energy322

The terms in the time-mean eddy potential-energy budget are evaluated323

so as to diagnose the role of eddies in the system. The results below will324

demonstrate that eddies extract potential energy from the mean field (stored325
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in the sloping isopycnals of the LC) and ultimately convert that energy to326

eddy kinetic energy.327

Following Cronin and Watts (1996) and Bishop et al. (2013), a quasi-328

geostrophic framework (small Rossby number, β plane) is assumed to be valid329

for our diagnostics. Temperature will be a proxy for density: ρ = ρo(1−αT ),330

where α is an effective thermal expansion coefficient (10−4 ◦C−1). Potential331

energy budget terms are evaluated near 400 m depth. This avoids the near-332

surface depth of subtropical underwater where the role of salinity would have333

to be independently included when calculating density.334

In a Boussinesq incompressible fluid, the time-mean temperature equation335

can be written as:336

u · ∇T = −wθz −∇ · u ′T ′, (4)

where u = (u, v) is geostrophic velocity, T is temperature, w is verti-337

cal velocity and θz is the regional background vertical temperature gradient.338

Overbars indicate a time mean and primes are the deviation from the mean.339

In the following discussion, u ′T ′ is referred to as ‘heat flux’ since implicitly340

eddy temperature flux multiplied by density and specific heat at constant341

pressure (ρoCp) is a heat flux. Equation 4 states that mean horizontal advec-342

tion is balanced by mean vertical advection and the divergence of horizontal343

eddy heat flux. Note that the dynamically important part of the eddy heat344

flux term is the divergent component of eddy heat flux.345

Eddy heat flux can be decomposed into rotational and divergent compo-346

nents by Helmholtz’s theorem. The rotational component recirculates heat347

whereas the divergent component provides the net lateral heat flux that trans-348
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fers potential energy into eddies. It is a challenge, numerically and observa-349

tionally to isolate these divergent eddy heat fluxes from the total eddy heat350

flux (see Griesel et al. (2009) for a recent discussion).351

The approach will be to take advantage of the vector decomposition,352

shown in Figure 3 and expressed as the baroclinic velocity relative to the353

bottom plus a bottom reference velocity, u = u bcb+uref . In strong advective354

systems, mean ψbcb streamlines are very nearly parallel to mean temperature355

contours and therefore do not advect mean temperature. Figure 14 shows356

the nearly linear relationship between mean ψbcb and mean T at 400 m within357

our array. Therefore358

u ′bcb · ∇T ′ = 0. (5)

The divergent component of the heat flux arises from the nearly depth-359

uniform reference current, of which a component can cross the time-varying360

baroclinic LC front. The dynamically important divergent heat flux is en-361

tirely contained in u ′refT
′. Figure 15 shows the mean eddy heat fluxes for362

the three LC eddy-shedding events superimposed on temperature variance.363

Eddy heat flux is calculated three ways for this illustration, using the total364

eddy velocity (u ′T ′), baroclinic eddy velocity (u ′bcbT
′), and reference eddy365

velocity (u ′refT
′). For each eddy event, u ′T ′ has the largest magnitudes. As366

expected from Marshall and Shutts (1981) u ′bcbT
′ circulates around temper-367

ature variance illustrating its rotational non-divergent nature. u ′refT
′ shows368

downgradient heat fluxes in all events with strongest fluxes along the eastern369

side of the LC where the strongest growth occurred.370

The eddy potential energy budget in steady state is determined by mul-371

tiplying the temperature equation by gαT ′/θz and averaging,372
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0 = −u · ∇ gα
2θz

T ′2 −∇ · u ′ gα
2θz

T ′2 − gα

θz
u ′T ′ · ∇T − gαT ′w′ (6)

where eddy potential energy is defined as373

EPE =
gα

2θz
T ′2. (7)

Dividing by αg/θz and rearranging yields,374

u · ∇1

2
T ′2︸ ︷︷ ︸

MAP

+∇ · u ′1
2
T ′2︸ ︷︷ ︸

EAP

+ θzT ′w′︸ ︷︷ ︸
PKC

= −u ′T ′ · ∇T︸ ︷︷ ︸
BC

(8)

Equation 8 states that the horizontal down-gradient eddy heat flux (BC)375

is balanced by the mean advection of eddy potential energy (MAP), eddy376

advection of eddy potential energy (EAP) and the vertical down-gradient377

heat flux (PKC). In baroclinic instability, the eddy conversion term (BC)378

of mean potential energy to eddy potential energy is balanced by the eddy379

conversion of eddy potential to eddy kinetic energy (PKC).380

If we decompose our velocity field as described above into the baroclinic-381

referenced-to-the-bottom and reference components, we can rewrite the eddy382

energy budget:383

ubcb · ∇
1

2
T ′2 + uref · ∇

1

2
T ′2 +∇ · u ′bcb

1

2
T ′2 +∇ · u ′ref

1

2
T ′2 + θzT ′w′

= −u ′bcbT ′ · ∇T +−u ′refT ′ · ∇T (9)

Because the baroclinic-referenced-to-bottom velocities flow along mean384

temperature contours (Figure 15), there is a relationship between mean tem-385

perature and velocity (Marshall and Shutts, 1981):386

fu bcb = 2γk̂×∇T (10)
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where γ is an empirical constant,387

γ =
1

2

dψbcb

dT
. (11)

Cronin and Watts (1996) and Bishop et al. (2013) argue that instantaneous388

field389

fu ′bcb = 2γk̂×∇T ′ (12)

also holds.390

Equations 11 and 12 state that the baroclinic-referenced-to-the-bottom391

field is aligned vertically with the front (“equivalent barotropic”), which is a392

good approximation in our array (Figure 14). With this decomposition, the393

following relationships hold:394

u bcb · ∇
1

2
T ′2 = −u ′bcbT ′ · ∇T (13)

and395

∇ · u ′bcb
1

2
T ′2 = 0 (14)

Therefore, the mean eddy potential energy budget can be reduced to the396

following:397

uref · ∇
1

2
T ′2︸ ︷︷ ︸

MAPref

+∇ · u ′ref
1

2
T ′2︸ ︷︷ ︸

EAPref

+ θzT ′w′︸ ︷︷ ︸
PKC

= −u ′refT ′ · ∇T︸ ︷︷ ︸
BCref

(15)

Hereafter the subscript ref will be dropped from Equation 15.398

To calculate these terms, one needs to determine vertical velocity w and399

mean θz. θz is determined by the mean stratification within the array and at400

400 m depth has a value of 0.023 ◦C m−1. Following Lindstrom and Watts401
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(1994) and Howden (2000), vertical velocity is estimated near the base of the402

thermocline from the depth of the 6◦ isotherm (Z6)403

w =
∂Z6

∂t
+ u · ∇Z6. (16)

Z6 is negative and becomes increasingly negative with depth.404

Figures 16 through 21 in the following LCE-specific discussions show the405

results of calculating the terms in the mean eddy potential energy budget406

(Equation 15). The maps summarize the energy conversion rates over the407

time interval of each respective case study. It is beyond the scope of this408

work to try to close the energy budget. Rather the aim is to illustrate major409

process of energy conversion.410

Eddy Ekman. The BC term closely balances the sum of the PKC, EAP and411

MAP terms (Figure 16). The BC term is positive (indicating down-gradient412

fluxes) along the northwestern corner near the Mississippi Fan and along the413

eastern side of the LC. Overall, the pattern in the PKC term corresponds well414

to the BC term, although their respective maxima and minima are slightly415

displaced. Time series of the BC′ and PKC′ terms in three regions where both416

terms are strong and positive are shown in Figure 17. Here BC′ is defined417

as −u ′refT ′ · ∇T and PKC′ is defined as θzT
′w′. Time series track each418

other well and are positively correlated with one another, with correlation419

coefficients (r) ranging from 0.51 to 0.74. The peaks in the time series can420

be traced back to dates when the deep eddies and upper SSHbcb 100-to-40421

day band passed fields jointly intensify (Figure 9). For the three time series422

shown here, located at the correspondingly color-coded stars on the map at423

the top of the figure, the peaks are associated with times when deep cyclone A424
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intensifies as it propagates along the LC periphery: near the Mississippi Fan425

(magenta star in Figure 17) in mid-July, when deep anticyclone B intensifies426

at the northeast corner (blue star) in late July and when deep cyclone C427

intensifies in the southeast corner (cyan star) in early August.428

Eddy Franklin. Similar to Ekman, during the Franklin event, the BC term429

closely balances the sum of the PKC, EAP and MAP terms (Figure 18). The430

BC term is positive (indicating down-gradient fluxes) near the base of the431

Mississippi Fan, along the eastern side of the LC as well as in the central432

portion of the array. Overall, the pattern in the PKC term corresponds well to433

the BC term, although the maxima and minima are again slightly displaced434

from one another. Additionally, the range of PKC values is larger than435

the BC range, particularly in the central array. Time series of the BC′and436

PKC′ terms in three regions where both terms are strong and positive are437

shown in Figure 19. Note the vertical scale extends to higher rates than438

for the other two eddy separation case studies discussed here. Time series439

track each other well and are positively correlated with one another, with440

correlation coefficients (r) ranging from 0.49 to 0.67. Positive BC and PKC441

peaks along the eastern side of the LC coincide with the propagation and442

development of several deep eddies. In the southeast (magenta star in Figure443

19), peaks are due to the intensification of deep anticyclone A (Figure 11)444

in early May. Along the northeast (blue star in Figure 19) the peak is due445

to the intensification of deep cyclone B. In the central array (cyan star), the446

late-June BC and PKC peaks occur when deep anticyclone C intensifies.447

Eddy Hadal. Just as for the Ekman and Franklin case studies, the BC term448

nearly balances the sum of the PKC, EAP and MAP terms (Figure 20). The449
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BC term has a maximum just downstream of the Mississippi Fan near 26.2◦N,450

86.2◦W. The PKC term is also high here, indicating that eddies gain potential451

energy from the mean LC and convert that energy to eddy kinetic energy.452

An additional maximum occurs in the PKC field, near 26.2◦N, 87.5◦W, and453

here the balance is mainly between PKC and EAP. Figure 21 shows the454

time series of BC′and PKC′ centered on a location where both terms sum455

to a strong positive peak. Again, the time series track each other well; the456

correlation coefficient is 0.86. The two large peaks in the time series, late457

April and mid-May, coincide with the intensification of deep cyclone B and458

deep anticyclone C, respectively (Figure 13).459

6. Discussion460

These observations, resolving the full-water column mesoscale circulation,461

provide a new perspective on LCE detachment and separation. The ‘necking462

down’ of the LC is achieved through the amplification of the meander trough463

that extends across the LC. It is a full water-column process. During the LCE464

detachment and formation events, a marked increase in deep eddy kinetic465

energy occurs coincident with the growth of a large-scale meander along the466

northern and eastern parts of the LC. The trough deepens through a train of467

upper-deep eddy interactions that precede each separation. Strongest upper-468

deep interaction and the most energetic deep eddies can occur well in advance469

of the final eddy separation. Joint intensification is intermittent, lasting only470

tens of days while the vertical phase tilt is optimal for baroclinic growth.471

Topography allows the deep eddies to propagate across the neck between472

the base of the Mississippi Fan and the Campeche Bank to effectuate LCE473
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detachment and separation.474

A preferred time-scale for upper-deep coupling emerges. Upper and deep475

stream function are coherent within the frequency band between 100 and476

40 d, the spatial offset is one where, in the direction of propagation, deep477

leads upper. Donohue et al. (2015) and Hamilton et al. (2015), this issue,478

show that these fluctuations cannot be traced back to Yucatan Channel.479

This contrasts the historical view that it is the downstream growth of LC480

peripheral frontal eddies that leads to LCE formation. Due to the limited481

spatial domain of the array, we cannot identify the trigger mechanism. In482

other words, we cannot unambiguously distinguish between locally generated483

deep eddies and external deep eddies that may enter and intensify when they484

encounter favorable phasing with the upper thermocline waters. Peripheral485

eddies may yet play an important role in LCE formation. The modeling486

study of Le Hénaff et al. (2012) suggests that as upper layer frontal cyclones487

propagate over the Mississippi Fan, a deep cyclone is generated. In their488

simulation, the upper-deep pair is shown to propagate across the LC and489

facilitate LCE formation. Recent modeling efforts, (Chérubin et al., 2006;490

Oey, 2008) explore how the position of the LC relative to topography plays a491

role in the stability of the current, with particular focus on circulation near492

Campeche Bank and the western side of the LC. Results from this study493

instead highlight the importance of the northeast corner of the LC where494

rapid growth of LC meanders and generation of strong deep EKE occur.495

The energetics for the three shedding events share the following charac-496

teristics. First, the magnitude of eddy advection of eddy potential energy,497

EAP, a triple-correlation term which has often been assumed small, must498
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in fact be included in the budget, because it is of the same order as the499

baroclinic conversion (BC) and vertical down-gradient heat flux (PKC). The500

mean advection of eddy potential energy (MAP) by the ref field is small501

compared to the other four terms. The spatial pattern and magnitude of the502

combined PKC+EAP+MAP terms are very similar to the BC term. Second,503

at any particular location, the time series that contribute to the terms in the504

eddy energy budget are episodic in the LC, often with only a few events dom-505

inating the mean. Conversion of available potential energy to eddy kinetic506

energy occurs primarily along the eastern edge of the LC.507

7. Conclusion508

Deep eddies that occur during and near Loop Current Eddy detachment509

gain their high-energy levels in a pattern consistent with developing baro-510

clinic instability. The periodicities associated with these are 100 to 40-days.511

Coherence estimates and case studies reveal that the deep streamfunction512

perturbations lead corresponding perturbations in the upper streamfunction,513

as they jointly intensify during a train of 3-4 cyclone/anticyclone pairs. This514

baroclinic instability is intrinsically a whole-water-column process, and the515

interaction between the upper and lower water column is quantified by eval-516

uating the mean-eddy potential-energy budget. The baroclinic energy con-517

version term, represented by down-gradient eddy heat fluxes, is found to be518

largest along the eastern side of the LC. In these peak conversion regions519

there is a near balance between horizontal down-gradient eddy heat fluxes520

(baroclinic conversion rate) and vertical down-gradient eddy heat fluxes, indi-521

cating that eddies extract available potential energy from the mean baroclinic522
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field and further convert that eddy potential energy to eddy kinetic energy.523
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Figure 1: Dynamics of the Loop Current Array consisted of 25 pressure inverted echo

sounders, PIES, (red triangle), 9 tall moorings (black circles) and 7 short moorings (black

squares). Bathymetry contoured every 1000 m depth, deepest topography denoted by the

darkest blue hues. Jason-2 altimetry tracks shown in red.
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Figure 2: Sea surface height fields at 21-day intervals during the three Loop Current

Eddy separations which occurred during the Dynamics of the Loop Current experiment.

PIES locations are shown as black dots in each panel. Mapped SSH determined from the

Colorado Center for Atmospheric Research (CCAR) Gulf of Mexico objectively mapped

historical mesoscale altimeter data reanalysis. Date noted in the lower left of each panel.

SSH contour interval is 5 cm.
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Figure 3: Several views of the circulation on June 24, 2010 provided by the PIES and

current meter measurements. Top panels: Total sea surface height in plan view (left),

displaying its baroclinic contribution referenced to the bottom (middle) and reference level

contribution (right). Anticyclonic circulations shown by reddish hues; cyclonic circulations

by bluish hues. Mapped current vectors plotted at 20 km spacing. PIES and current meter

sites denoted by black circles. Bottom left panel: The vector sum of deep reference velocity

(blue arrow) and baroclinic referenced to the bottom velocity (gray arrow) produces the

total velocity. A baroclinic velocity profile that is vertically aligned like this is called

equivalent barotropic. Bottom two right panels: Zonal and meridional velocity (total is

black, reference level velocity is blue, and baroclinic referenced to the bottom is gray) at

the magenta square shown in the upper panels.
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Figure 4: Mapped and directly measured mean currents (respectively thin and bold vec-

tors) for 200 m level (panel a) and near bottom (panel b). Standard deviation ellipses

superimposed on the time-mean eddy kinetic energy (color-bar, cm2 s−2). Scale for vectors

and ellipses shown in lower left corner. Red line denotes the mean Loop Current position

defined by the CCAR-SSH 17 cm contour. Bathymetry plotted with gray contours every

500 m depth. Time mean is taken over the 30-month experiment duration from May 3,

2009 through October 23, 2011. Panels c and d: Time series of array-averaged 200 m

(panel c) and near-bottom (panel d) eddy kinetic energy in units of cm2 s−2. Panel e:

Time series of array-average CCAR-SSH derived Loop Current area in units of 103 km2.
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Figure 5: Standard deviation of SSHbcb (top panels) and SSHref (bottom panels) as a

function of frequency band. Leftmost panels show total standard deviation. Three right

panels: Standard deviation in three frequency bands noted above each panel. Bathymetry

contoured in gray every 500 m depth. Note that the colorbar contour interval is not

uniform.
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Figure 6: Variance-preserving power spectrum for individual (gray) and array-averaged

(black) PIES SSHbcb. Frequency limits that define the frequency bands evaluated in Fig-

ure 5 are denoted with vertical black lines.
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Figure 7: Coherence (left) and phase (right) between upper, SSHbcb, and lower, SSHref ,

streamfunction for three frequency bands: top (1/64 d−1), middle (1/51.2 d−1), and bot-

tom (1/32 d−1), estimated using Welch’s averaged periodogram method (256-day length

segment with 50% overlap). Phase (in degrees) contoured where coherence exceeds 95%

confidence limits denoted by the thick black contour in the coherence maps. Negative phase

indicates that deep leads upper. PIES locations shown by black diamonds. Bathymetry

(thin black line) contoured every 1000 m depth.
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Figure 8: Loop Current Eddy shedding event Ekman May 9 through September 10 2009.

Maps of baroclinic SSH referenced to the bottom (SSHbcb) embedded within altimetric

SSH (filled color contours; colorbar and contour interval in the bottom left figure corner).

Maps shown sequentially left to right, top to bottom at 4-day intervals. The 17 cm contour

(bold green, SSHbcb within array, altimetric SSH outside array) denotes the location of the

Loop Current. Mapped reference level SSH (SSHref ) reveals the presence of deep cyclones

(thin blue contours) and anticyclones (thin red contours) contoured every 2 cm. Diamonds

denote PIES sites. Gray lines denote the 3000 m depth contour.
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Figure 9: Loop Current Eddy shedding event Ekman May 9 through September 10 2009.

Maps of 100-40 day band-passed baroclinic SSH referenced to the bottom (SSHbcb) em-

bedded within altimetric SSH (filled color contours; colorbar and contour interval in the

bottom left figure corner). Maps shown sequentially left to right, top to bottom at 4 day

intervals. The 17 cm contour (bold green, SSHbcb within array, altimetric SSH outside

array) denotes the location of the Loop Current. Mapped 100-40 day band-passed refer-

ence level SSH (SSHref ) reveals the presence of deep cyclones (thin blue contours) and

anticyclones (thin red contours) contoured every 2 cm. Diamonds denote PIES sites. Gray

lines denote the 3000 m depth contour. The July 4 map indicates deep cyclone A and deep

anticyclone B discussed in the text. The July 24 map indicates deep cyclone C discussed

in the text.
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Figure 10: Same as Figure 8, for Loop Current Eddy shedding event Franklin April 11

through September 13, 2010.
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Figure 11: Same as Figure 9, for Loop Current Eddy shedding event Franklin April 11

through September 13, 2010. The May 11 map indicates deep anticyclone A and deep

cyclone B discussed in the text. The June 5 map indicates deep anticyclone C discussed in

the text. The June 30 map indicates deep cyclones B, D and deep anticyclone C discussed

in the text. The August 4 map also indicates deep cyclone D and deep anticyclone C.
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Figure 12: Same as Figure 8, Loop Current Eddy shedding event Hadal March 9 through

August 11, 2011.
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Figure 13: Same as Figure 9, Loop Current Eddy shedding event Hadal March 9 through

August 11, 2011. The April 13, May 3 and May 23 maps indicate deep anticyclone A,

deep cyclone B, and deep anticyclone C, respectively. The May 28 map indicates deep

cyclone B and deep anticyclone C discussed in the text. The June 22 map indicates the

deep cyclone D discussed in the text.
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mean T at 400 m (gray dots).
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Figure 15: Eddy heat flux vectors at 400 m depth for the three Loop Current Eddy

shedding events superimposed on the 400 m depth temperature variance (same across each

row). Rows correspond to time averages over the Loop Current Eddy shedding events:

Ekman May 3 through August 31, 2009 (top), Franklin February 15 through September 14,

2010 (middle), Hadal March 1 through September 14, 2011 (bottom). Columns correspond

to the perturbation velocity used in the eddy heat flux calculation: total (left), baroclinic-

referenced-to-the-bottom (center), reference (right). The bold black line denotes the mean

position of the 17 cm altimeter-mapped SSH contour; gray contours indicate the 10, 27,

and 37 cm contour. The 3000 m isobath contoured with thin black line.
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Figure 16: Four terms in the steady eddy potential energy budget (Eqn 15) determined for

the Ekman event May 3 through August 31, 2009 at 400 m depth (contour interval after

multiplication by gα/Θz = 428 cm2s−2◦C−2 is 0.5× 10−3cm2 s−3; in colorbar blues hues

are negative and orange hues are positive). The horizontal downgradient eddy heat flux

(BC) is balanced by the mean advection of eddy potential energy (MAP), eddy advection

of eddy potential energy (EAP) and the vertical downgradient heat flux (PKC). Right

panel shows the sum of the PKC, EAP and MAP terms. The red line denotes the mean

position of the 17 cm altimeter-mapped SSH contour. Bathymetry (thick black lines)

contoured every 1000 m depth. 48
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Figure 17: Top panels: BC (left) and PKC (right) at 400 m depth determined for the

Ekman event (contour interval after multiplication by gα/Θz = 428 cm2s−2◦C−2 is

0.5× 10−3cm2 s−3; in colorbar blues hues are negative and orange hues are positive).

The red line denotes the mean position of the 17 cm altimeter-mapped SSH contour.

Bathymetry (thick black lines) contoured every 1000 m depth. Bottom three panels: time

series of BC′ (red) and PKC′ (blue) at locations indicated by colored stars in the mapped

energetic terms (top panels) and denoted on the top left corner of each time series plot.
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BC − u′T ′ · ∇T

Franklin   Feb.15,2010 through Sep.14,2010 400 m depth
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Figure 18: Four terms in the steady eddy potential energy budget (Eqn 15) determined

for the Franklin event February 15 through September 14, 2010 at 400 m depth (contour

interval after multiplication by gα/Θz = 428 cm2s−2◦C−2 is 0.5× 10−3cm2 s−3; in color-

bar blues hues are negative and orange hues are positive). The horizontal downgradient

eddy heat flux (BC) is balanced by the mean advection of eddy potential energy (MAP),

eddy advection of eddy potential energy (EAP) and the vertical downgradient heat flux

(PKC). Right panel shows the sum of the PKC, EAP and MAP terms. The red line de-

notes the mean position of the 17 cm altimeter-mapped SSH contour. Bathymetry (thick

black lines) contoured every 1000 m depth.50
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Franklin   Feb.15,2010 through Sep.14,2010 400 m depth

  88°W   86°W   84°W

 25°N

 26°N

 27°N

P K C w ′T ′Θ z

  88°W   86°W   84°W

 25°N

 26°N

 27°N

10−3 cm2s−3
−3 −1 1 3

Mar Apr May Jun Jul Aug Sep
−20

0

20

40
BC ′ P K C ′ r = 0.49

10
−

3  c
m

2 s−
3

Mar Apr May Jun Jul Aug Sep
−20

0

20

40 r = 0.67

10
−

3  c
m

2 s−
3

Mar Apr May Jun Jul Aug Sep
−20

0

20

40 r = 0.49

10
−

3  c
m

2 s−
3

Figure 19: Top panels: BC (left) and PKC (right) at 400 m depth determined for the

Franklin event (contour interval after multiplication by gα/Θz = 428 cm2s−2◦C−2 is

0.5× 10−3cm2 s−3; in colorbar blues hues are negative and orange hues are positive).

The red line denotes the mean position of the 17 cm altimeter-mapped SSH contour.

Bathymetry (thick black lines) contoured every 1000 m depth. Bottom three panels: time

series of BC′ (red) and PKC′ (blue) at locations indicated by colored stars in the mapped

energetic terms (top panels) and denoted on the top left corner of each time series plot.
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Hadal   Mar.01,2011 through Sep.14,2011 400 m depth
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Figure 20: Four terms in the steady eddy potential energy budget (Eqn15) determined for

the Hadal event March 1 through September 14, 2011, at 400 m depth (contour interval

after multiplication by gα/Θz = 428 cm2s−2◦C−2 is 0.5× 10−3cm2 s−3; in colorbar indi-

cates blues hues are negative and orange hues are positive). The horizontal downgradient

eddy heat flux (BC) is balanced by the mean advection of eddy potential energy (MAP),

eddy advection of eddy potential energy (EAP) and the vertical downgradient heat flux

(PKC). Right panel shows the sum of the PKC, EAP and MAP terms. The red line de-

notes the mean position of the 17 cm altimeter-mapped SSH contour. Bathymetry (thick

black lines) contoured every 1000 m depth.52
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Figure 21: Top panels: BC (left) and PKC (right) at 400 m depth determined for

the Hadal event (contour interval after multiplication by gα/Θz = 428 cm2s−2◦C−2 is

0.5× 10−3cm2 s−3; in colorbar blues hues are negative and orange hues are positive).

The red line denotes the mean position of the 17 cm altimeter-mapped SSH contour.

Bathymetry (thick black lines) contoured every 1000 m depth. Bottom three panels: time

series of BC′ (red) and PKC′ (blue) at locations indicated by colored stars in the mapped

energetic terms (top panels) and denoted on the top left corner of each time series plot.
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