286 research outputs found

    Unification Theory of Angular Magnetoresistance Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    We present a unification theory of angular magnetoresistance oscillations, experimentally observed in quasi-one-dimensional organic conductors, by solving the Boltzmann kinetic equation in the extended Brillouin zone. We find that, at commensurate directions of a magnetic field, resistivity exhibits strong minima. In two limiting cases, our general solution reduces to the results, previously obtained for the Lebed Magic Angles and Lee-Naughton-Lebed oscillations. We demonstrate that our theoretical results are in good qualitative and quantitative agreement with the existing measurements of resistivity in (TMTSF)2_2ClO4_4 conductor.Comment: 6 pages, 2 figure

    Phenomenology of the Baryon Resonance 70-plet at Large N_c

    Full text link
    We examine the multiplet structure and decay channels of baryon resonances in the large N_c QCD generalization of the N_c = 3 SU(6) spin-flavor 70. We show that this ``70'', while a construct of large N_c quark models, actually consists of five model-independent irreducible spin-flavor multiplets in the large N_c limit. The preferred decay modes for these resonances fundamentally depend upon which of the five multiplets to which the resonance belongs. For example, there exists an SU(3) ``8'' of resonances that is eta-philic and pi-phobic, and an ``8'' that is the reverse. Moreover, resonances with a strong SU(3) ``1'' component prefer to decay via a K-bar rather than via a pi. Remarkably, available data appears to bear out these conclusions.Comment: 26 pages, ReVTe

    Theory of Thermodynamic Magnetic Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    The second order correction to free energy due to the interaction between electrons is calculated for a quasi-one-dimensional conductor exposed to a magnetic field perpendicular to the chains. It is found that specific heat, magnetization and torque oscillate when the magnetic field is rotated in the plane perpendicular to the chains or when the magnitude of magnetic filed is changed. This new mechanism of thermodynamic magnetic oscillations in metals, which is not related to the presence of any closed electron orbits, is applied to explain behavior of the organic conductor (TMTSF)2_2ClO4_4.Comment: 11 pages + 5 figures (included

    Magic angle effects of the one-dimensional axis conductivity in quasi-one dimensional conductors

    Full text link
    In quasi-one-dimensional conductors, the conductivity in both one-dimensional axis and interchain direction shows peaks when magnetic field is tilted at the magic angles in the plane perpendicular to the conducting chain. Although there are several theoretical studies to explain the magic angle effect, no satisfactory explanation, especially for the one-dimensional conductivity, has been obtained. We present a new theory of the magic angle effect in the one-dimensional conductivity by taking account of the momentum-dependence of the Fermi velocity, which should be large in the systems close to a spin density wave instability. The magic angle effect is explained in the semiclassical equations of motion, but neither the large corrugation of the Fermi surface due to long-range hoppings nor hot spots, where the relaxation time is small, on the Fermi surface are required.Comment: 4 pages, 3 figure

    Upper critical field in layered superconductors

    Full text link
    The theoretical statements about a restoration of a superconductivity at magnetic fields higher than the quasiclassical upper critical field and a reentrance of superconductivity at temperatures Tc(H)Tc(0)T_c(H)\approx T_c(0) in the superconductors with open Fermi surfaces are reinvestigated taking into account a scattering of quasiparticles on the impurities. The system of integral equations for determination of the upper critical field parallel to the conducting planes in a layered conventional and unconventional superconductors with impurities are derived. The Hc2(T)H_{c2}(T) values for the "clean" case in the Ginzburg-Landau regime and at any temperature in the "dirty" case are found analytically. The upper limit of the superconductor purity when the upper critical field definately has a finite value is established.Comment: 10 page

    Superconductivity of Quasi-Two-Dimensional Tight-Binding Electrons in a Strong Magnetic Field

    Full text link
    We have investigated the transition temperature Tc(H)T_{\rm c}(H) of superconductiv ity in quasi-two-dimensional (Q2D) tight-binding electrons in a strong magnetic field. When the magnetic field is parallel to 2D conducting plane, Tc(H)T_{\rm c}(H) of the Q2D superconductor is shown to increase in an oscillatory manner as the magnetic field becomes large and to reach Tc(0)T_{\rm c}(0) in a strong magnetic f ield limit for the spin-triplet superconductor. We consider the cases of on-site and nearest sites attractive interaction, and calculate the magnetic field depe ndences of the transition temperature for various types of symmetry. The first o rder transition from pyp_y-wave to pxp_x-wave is shown to occur at H35H\sim 35T w hen the magnetic field is parallel to the yy direction, which will be observed in a triplet superconductor, Sr2_2RuO4_4.Comment: 13pages,6figure

    Sign reversals of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases, which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that umklapp processes may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors. Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear (sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: 4 pages, latex, 3 figure

    Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave (FISDW) phases which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that the transition temperature is determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the SDW polarization (linear or circular) by analyzing the Ginzburg-Landau expansion of the free energy. We also study how umklapp processes modify the quantum Hall effect (QHE) and the spectrum of the FISDW phases. We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally observed in the Bechgaard salts. These ``negative'' phases are characterized by the simultaneous existence of two SDWs with comparable amplitudes. As the umklapp scattering strength increases, they may become helicoidal (circularly polarized SDWs). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: Revtex, 27 pages, 9 figure

    High temperature radiator materials for applications in the low Earth orbital environment

    Get PDF
    Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials (304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr)) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in an RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated
    corecore