2,509 research outputs found
Measuring the Hubble Constant with the Hubble Space Telescope
Ten years ago our team completed the Hubble Space Telescope Key Project on
the extragalactic distance scale. Cepheids were detected in some 25 galaxies
and used to calibrate four secondary distance indicators that reach out into
the expansion field beyond the noise of galaxy peculiar velocities. The result
was H_0 = 72 +/- 8 km/sec/Mpc and put an end to galaxy distances uncertain by a
factor of two. This work has been awarded the Gruber Prize in Cosmology for
2009.Comment: Gruber Prize Lecture to be published in Transactions of the IA
Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds
A V/STOL tunnel study was performed to determine the effects of spanwise blowing on longitudinal aerodynamic characteristics of a model using a vectored-over-wing powered lift concept. The effects of spanwise nozzle throat area, internal and external nozzle geometry, and vertical and axial location were investigated. These effects were studied at a Mach number of 0.186 over an angle-of-attack range from 14 deg to 40 deg. A high pressure air system was used to provide jet-exhaust simulation. Engine nozzle pressure ratio was varied from 1.0 (jet off) to approximately 3.75
Performance characteristics of axisymmetric convergent-divergent exhaust nozzles with longitudinal slots in the divergent
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels
Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg
An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0
Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles
The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry
Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles
The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance
Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles
The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios
Technology utilization program report, 1974
The adaptation of various technological innovations from the NASA space program to industrial and domestic applications is summarized
Effects of twin-vertical-tail parameters on twin-engine afterbody/nozzle aerodynamic characteristics
The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on twin-engine aft-end aerodynamic characteristics. Model variables included twin-vertical-tail cant angle, toe angle, airfoil camber, and root-chord length and afterbody/engine interfairing shape. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack range from 2 deg to 10 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0
Static internal performance of single-expansion-ramp nozzles with various combinations of internal geometric parameters
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested
- …