68 research outputs found

    Carbon cycle feedbacks during the Oligocene-Miocene transient glaciation

    Get PDF
    Ice sheet models suggest that once formed, the large, high- altitude East Antarctic Ice Sheet was relatively self-stabilizing, due to its cold upper surface. The ice sheet hysteresis problem results from an inability to reconcile this expectation with geological evidence for episodes of ice sheet retreat. A classic example of this problem is manifested in benthic foraminiferal oxygen isotope records across the Oligocene-Miocene boundary (ca. 23 Ma), which display a transient ~1‰ excursion to higher values. The inferred increase and subsequent decrease in ice volume has been linked to advance and retreat of the Antarctic ice sheet across the continental shelf. However, oxygen isotope records alone do not provide unambiguous records of temperature and ice volume, hindering assessment of the driving mechanism for these variations. Here we present new benthic foraminiferal Mg/Ca, Li/Ca, and U/Ca records across the Oligocene- Miocene boundary from Ocean Drilling Program Sites 926 and 929. Our records demonstrate that Atlantic bottom-water temperatures varied cyclically, with the main cooling and warming steps followed by ice growth and decay respectively. We suggest that enhanced organic carbon burial acted as a positive feedback as climate cooled. Several lines of evidence suggest that the deglaciation was associated with an input of carbon to the ocean-atmosphere system, culminating in a previously unidentified seafloor dissolution event. We suggest that one of the initial sources of carbon was organic matter oxidation in ocean sediments. This study demonstrates that carbon cycle feedbacks should be considered when evaluating the stability of ancient ice sheets

    Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: toward unlocking temperatures and saturation states

    Get PDF
    The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ∼1‰ between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ∼1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ∼0.6‰. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records

    Cenozoic climate changes: A review based on time series analysis of marine benthic δ18O records

    Get PDF
    The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice-volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time-series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend; the two-step, long-term Eocene cooling; and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom-water temperatures at low (less than 30â—¦) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling

    Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures

    Get PDF
    We explore the use of Mg/Ca ratios in six Arctic Ocean benthic foraminifera species as bottom water palaeothermometers and expand published Mg/Ca-temperature calibrations to the coldest bottom temperatures (<1 °C). Foraminifera were analyzed in surface sediments at 27 sites in the Chukchi Sea, East Siberian Sea, Laptev Sea, Lomonosov Ridge and Petermann Fjord. The sites span water depths of 52–1157 m and bottom water temperatures (BWT) of −1.8 to +0.9 °C. Benthic foraminifera were alive at time of collection, determined from Rose Bengal (RB) staining. Three infaunal and three epifaunal species were abundant enough for Mg/Ca analysis. As predicted by theory and empirical evidence, cold water Arctic Ocean benthic species produce low Mg/Ca ratios, the exception being the porcelaneous species Quinqueloculina arctica. Our new data provide important constraints at the cold end (<1 °C) when added to existing global datasets. The refined calibrations based on the new and published global data appear best supported for the infaunal species Nonionella labradorica (Mg/Ca = 1.325 ± 0.01 × e^(0.065 ± 0.01 × BWT), r2 = 0.9), Cassidulina neoteretis (Mg/Ca = 1.009 ± 0.02 × e^(0.042 ± 0.01 × BWT), r2 = 0.6) and Elphidium clavatum (Mg/Ca = 0.816 ± 0.06 + 0.125 ± 0.05 × BWT, r2 = 0.4). The latter is based on the new Arctic data only. This suggests that Arctic Ocean infaunal taxa are suitable for capturing at least relative and probably semi-quantitative past changes in BWT. Arctic Oridorsalis tener Mg/Ca data are combined with existing O. umbonatus Mg/Ca data from well saturated core-tops from other regions to produce a temperature calibration with minimal influence of bottom water carbonate saturation state (Mg/Ca = 1.317 ± 0.03 × e^(0.102 ± 0.01 BWT), r2 = 0.7). The same approach for Cibicidoides wuellerstorfi yields Mg/Ca = 1.043 ± 0.03 × e^(0.118 ± 0.1 BWT), r2 = 0.4. Mg/Ca ratios of the porcelaneous epifaunal species Q. arctica show a clear positive relationship between Mg/Ca and Δ[CO32−] indicating that this species is not suitable for Mg/Ca-palaeothermometry at low temperatures, but may be useful in reconstructing carbonate system parameters through time

    Cenozoic seawater Sr/Ca evolution

    Get PDF
    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth’s history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotem- perature record from the same samples, the gastropod record suggests that Sr/Casw was slightly higher in the Eocene (11.4‘3mmol/mol)thantoday(11.4 ` 3 mmol/mol) than today (8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gas- tropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic pre- cipitate (calcite veins) Sr/Casw records. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Casw records. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide

    Calcareous nannofossils across the Eocene-Oligocene transition at Site 756 (Ninetyeast Ridge, Indian Ocean): implications for biostratigraphy and paleoceanographic clues

    Get PDF
    The timing and modalities of calcareous phytoplankton community and evolutionary responses to the Eocene-Oligocene transition (EOT, ~34 Ma) are still under-investigated. In order to better constrain the dynamics of these pelagic primary producers during the climate transition, we conducted high resolution assemblage analysis on calcareous nannofossils across a ~19 m-thick interval of nannofossil ooze at Ocean Drilling Program (ODP) Site 756 (Ninetyeast Ridge, Indian Ocean; Peirce et al. 1989) (paleolatitude ~43° S; Zachos et al. 1992). We explored the diversity patterns against a new integrated planktonic foraminifera and calcareous nannofossil biostratigraphy produced for the site, as well as new benthic foraminifera and bulk sediment stable isotope (C, O) records, which documents ocean-climate changes, and provides independent chemostratigraphy. The study section spans nannofossil Zones NP20-NP23 (equivalent to CNE20-CNO4) and lasts 5.5 Myr. The results show that the hankeninid extinction falls within the ~4.5 m-thick EOT isotopic interval (0.67 m below the base of the second positive δ18O shift – EOIS), which is consistent with previous studies, making Hole 756C one of a few sites globally boasting both the familiar stepped δ18O and δ13C structure of the EOT and the primary biostratigraphic marker defining the base of the Oligocene. A series of potentially useful new calcareous nannofossil bioevents were identified that could help improve dating and correlation of this crucial interval. In this context, changes in calcareous nannofossil assemblages observed across EOT are interpreted in terms of modifications of paleoecological parameters that typically control the abundance and distribution of different taxa. Variations in sea surface temperature and nutrient availability are considered to be the most likely triggers for the calcareous phytoplankton changes observed across EOT. Specifically, our data suggest that increased nutrients in the mixed layer played a key role in shaping the late Eocene – early Oligocene calcareous nannofossil assemblages

    Strontium to calcium ratios in the marine gastropod Conus ermineus: Growth rate effects and temperature calibration

    Get PDF
    Here we investigate the potential of Sr/Ca ratios in the marine gastropod Conus ermineus for reconstructing seawater temperatures. We present annually resolved records of Sr/Ca and δ 18O for four shells collected alive from the Flower Garden Banks National Marine Sanctuary in the Gulf of Mexico. Our results show that variations in Sr/Ca and δ 18O covary with the in situ seasonal temperature cycle. Sr/Ca and temperature are positively correlated, in contrast with the inverse relationship found in inorganically precipitated aragonite. The seasonal Sr/Ca variability is superimposed on a long-term trend of increasing Sr/Ca with age. Both the seasonal and long-term ontogenetic changes in Sr/Ca are associated with variations in growth rate, defined here as the shell linear extension rate (LER); the seasonal variability in LER is superimposed on a long-term decrease with ontogeny. Thus the covariance of Sr/Ca ratios with temperature and LER suggests that Sr incorporation is likely driven by temperature influence on growth rate, rather than by thermodynamic effects. Unlike the seasonal variability, the ontogenetic effect is characterized by inverse covariation between Sr/Ca and LER, suggesting that Sr/Ca variability is not controlled by growth rate alone, but probably by two different biomineralization mechanisms, one related to temperature and the other related to age. We use the seasonal Sr/Ca signal of four shells to construct a temperature calibration. To minimize the ontogenetic effects, we separate the records into juvenile and adult growth stages and calculate the Sr/Ca-temperature (T) relationships: Juvenile: Sr/Ca (mmol mol−1) = 0.042 (±0.008) * T (°C) + 0.24 (±0.21) (R2 = 0.66) Adult: Sr/Ca(mmol mol−1) = 0.072 (±0.014) * T (°C) − 0.05 (±0.34) (R2 = 0.68) Applying the calibration to a single specimen provides mean annual temperature estimates within ±1°C of the in situ temperature record but resolves the seasonal variability only within ±3.5°C. The large error in the seasonal estimates reflects the high variability among specimens. To reduce the uncertainty on seasonal temperatures, we propose combining records from multiple shells to generate an average temperature record. The potential of this approach needs, however, to be validated in other locations

    Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production

    Get PDF
    Copyright 2008 by the American Geophysical Union. 0883-8305/08/2008PA001640A high-resolution record of exceptionally well preserved calcareous nannofossil assemblages from Tanzania is marked by two key transitions closely related to the climatic events of the Eocene-Oligocene transition (EOT). The first transition, at 34.0 Ma, precedes the first positive shift in d18O and coincides with a distinct interval of very low nannofossil abundance and a cooling in sea surface temperatures (SST). The second, at 33.63 Ma, is immediately above the Eocene-Oligocene boundary (EOB) and is associated with a significant drop in nannofossil diversity. Both transitions involve significant reductions in the abundance of holococcoliths and other oligotrophic taxa. These changes in calcareous phytoplankton assemblages indicate (1) a widespread and significant perturbation to the low-latitude surface ocean closely tied to the EOB, (2) a potential role for reduced carbonate primary production at the onset of global cooling, and (3) a significant increase in nutrient availability in the low-latitude surface ocean through the EOT

    Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

    Get PDF
    The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland–Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica

    Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research

    Get PDF
    Thirteen laboratories from the USA and Europe participated in an intercomparison study of Mg/Ca and Sr/Ca measurements in foraminifera. The study included five planktonic species from surface sediments from different geographical regions and water depths. Each of the laboratories followed their own cleaning and analytical procedures and had no specific information about the samples. Analysis of solutions of known Mg/Ca and Sr/Ca ratios showed that the intralaboratory instrumental precision is better than 0.5% for both Mg/Ca and Sr/Ca measurements, regardless whether ICP-OES or ICP-MS is used. The interlaboratory precision on the analysis of standard solutions was about 1.5% and 0.9% for Mg/Ca and Sr/Ca measurements, respectively. These are equivalent to Mg/Ca-based temperature repeatability and reproducibility on the analysis of solutions of ±0.2°C and ±0.5°C, respectively. The analysis of foraminifera suggests an interlaboratory variance of about ±8% (%RSD) for Mg/Ca measurements, which translates to reproducibility of about ±2–3°C. The relatively large range in the reproducibility of foraminiferal analysis is primarily due to relatively poor intralaboratory repeatability (about ±1–2°C) and a bias (about 1°C) due to the application of different cleaning methods by different laboratories. Improving the consistency of cleaning methods among laboratories will, therefore, likely lead to better reproducibility. Even more importantly, the results of this study highlight the need for standards calibration among laboratories as a first step toward improving interlaboratory compatibility
    • …
    corecore