47 research outputs found
Vibration Characteristics Of Free Thin Cylindrical Shells
This paper considers the flexural vibrations of free thin circular cylinders. A frequency equation is derived using free-free characteristic beam functions to represent the variation of mid-surface shell displacement components, u, v and w, with respect to the axial direction. Timoshenko strain-displacement relations for thin cylinders are used to determine elastic vibratory strain energy. Energy methods are applied to obtain the frequency equation and associated amplitude ratios for each of its roots. This energy solution is checked experimentally using a vibration exciter and numerically using the SABOR IV finite element program. With minor modification, the frequency equation conforms to the one obtained in a similar way by Arnold and Warburton for cylinders with clamped ends and simply supported ends. Thus the proposed form of frequency equation, by accommodating a greater variety of boundary conditions, simplifies the task of determining cylinder vibration characteristics. © 1974 by ASME
Atom interferometry with Bose-Einstein condensates in a double-well potential
A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein
condensates coherently split by deforming an optical single-well potential into
a double-well potential. The relative phase between the two condensates was
determined from the spatial phase of the matter wave interference pattern
formed upon releasing the condensates from the separated potential wells.
Coherent phase evolution was observed for condensates held separated by 13
m for up to 5 ms and was controlled by applying ac Stark shift potentials
to either of the two separated condensates.Comment: 4 pages, 4 figure
Distillation of Bose-Einstein condensates in a double-well potential
Bose-Einstein condensates of sodium atoms, prepared in an optical dipole
trap, were distilled into a second empty dipole trap adjacent to the first one.
The distillation was driven by thermal atoms spilling over the potential
barrier separating the two wells and then forming a new condensate. This
process serves as a model system for metastability in condensates, provides a
test for quantum kinetic theories of condensate formation, and also represents
a novel technique for creating or replenishing condensates in new locations
Coreless vortex formation in a spinor Bose-Einstein condensate
Coreless vortices were phase-imprinted in a spinor Bose-Einstein condensate.
The three-component order parameter of F=1 sodium condensates held in a
Ioffe-Pritchard magnetic trap was manipulated by adiabatically reducing the
magnetic bias field along the trap axis to zero. This distributed the
condensate population across its three spin states and created a spin texture.
Each spin state acquired a different phase winding which caused the spin
components to separate radially.Comment: 5 pages, 2 figure
Topological vortex formation in a Bose-Einstein condensate
Vortices were imprinted in a Bose-Einstein condensate using topological
phases. Sodium condensates held in a Ioffe-Pritchard magnetic trap were
transformed from a non-rotating state to one with quantized circulation by
adiabatically inverting the magnetic bias field along the trap axis. Using
surface wave spectroscopy, the axial angular momentum per particle of the
vortex states was found to be consistent with or , depending
on the hyperfine state of the condensate.Comment: 5 pages, 3 figure
Transport of Bose-Einstein Condensates with Optical Tweezers
We have transported gaseous Bose-Einstein condensates over distances up to 44
cm. This was accomplished by trapping the condensate in the focus of an
infrared laser and translating the location of the laser focus with controlled
acceleration. Condensates of order 1 million atoms were moved into an auxiliary
chamber and loaded into a magnetic trap formed by a Z-shaped wire. This
transport technique avoids the optical and mechanical access constraints of
conventional condensate experiments and creates many new scientific
opportunities.Comment: 5 pages, 3 figure
Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein condensate
Doubly quantized vortices were topologically imprinted in Na
condensates, and their time evolution was observed using a tomographic imaging
technique. The decay into two singly quantized vortices was characterized and
attributed to dynamical instability. The time scale of the splitting process
was found to be longer at higher atom density.Comment: 5 pages, 4 figure
Fractal Noise in Quantum Ballistic and Diffusive Lattice Systems
We demonstrate fractal noise in the quantum evolution of wave packets moving
either ballistically or diffusively in periodic and quasiperiodic tight-binding
lattices, respectively. For the ballistic case with various initial
superpositions we obtain a space-time self-affine fractal which
verify the predictions by Berry for "a particle in a box", in addition to
quantum revivals. For the diffusive case self-similar fractal evolution is also
obtained. These universal fractal features of quantum theory might be useful in
the field of quantum information, for creating efficient quantum algorithms,
and can possibly be detectable in scattering from nanostructures.Comment: 9 pages, 8 postscript figure