7 research outputs found

    G protein-coupled receptor kinase 2 regulates mitochondrial bioenergetics and impairs myostatin-mediated autophagy in muscle cells

    Get PDF
    G protein-coupled receptor kinase 2 (GRK2) is an important protein involved in β-adrenergic receptor desensitization. In addition, studies have shown GRK2 can modulate different metabolic processes in the cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis and increase ATP production. However, the role of GRK2 in skeletal muscle and the signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a well-known myokine that has been shown to impair mitochondria function. Here, we have assessed the role of myostatin in regulating GRK2 and the subsequent downstream effect of myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle. Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-mediated protein loss, as treatment with proteasome inhibitors partially rescued myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on mitochondrial respiration, we generated stable myoblast lines that overexpress GRK2. Stable overexpression of GRK2 resulted in increased mitochondrial content and enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of GRK2 was unable to prevent myostatin-mediated impairment of mitochondrial respiratory function, elevated levels of GRK2 blocked the increased autophagic flux observed following treatment with myostatin. Overall, our data suggest a novel role for GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal muscle

    High-intensity intermittent exercise increases adenosine hydrolysis in platelets and lymphocytes and promotes platelet aggregation in futsal athletes

    No full text
    Acute bouts of high-intensity intermittent exercise (HIIE) or sports are associated with changes in lymphocytes and platelet functions and we hypothesized that the purinergic system is involved with these alterations. We investigated the activity of ectonucleotidases in platelets and lymphocytes as well as the platelet aggregation of futsal players in response to an acute protocol of HIIE. Thus, 19 male semi-professional futsal players were submitted to 40 min of HIIE on a treadmill. Blood samples were collected three-time points: before exercise, immediately after, and 30 min after the end of the session. Platelet-rich plasma (PRP) and lymphocytes were isolated. ATP, ADP, AMP, and adenosine hydrolysis, NTPDase1 (CD39) expression as well as platelet aggregation were measured. Our results showed HIIE induced a decrease in ATP and ADP hydrolysis in platelets, an increase in adenosine hydrolysis and an increase in platelet aggregation immediately after exercise. After 30 min of recovery, enzymatic activity and platelet aggregation returned to baseline levels. In lymphocytes, adenosine hydrolysis was augmented immediately after exercise and remained increased even after 30 min of recovery. In conclusion, acute HIIE triggers a transient proaggregant status that is reverted after a 30 min of recovery. The effects of HIIE in lymphocytes remained after 30 min of recovery, indicating a pro-inflammatory response. This work elucidated some of the mechanisms by which purinergic system regulates lymphocytes and platelets activities related to HIIE, suggesting that the type of exercise may influence an increase in platelet aggregation even in trained individuals

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore