99 research outputs found

    100 GHz Spaced 10 Gbit/s WDM over 10 degrees C to 70 degrees C using an uncooled DBR laser

    Get PDF
    100 GHz spaced 10 Gbit/s (NRZ, PRBS 2(31)-1) WDM transmission is demonstrated with an uncooled DBR laser. The wavelength of the laser was stabilised within 2 GHz from 10 degrees C to 70 degrees C using a predicting algorithm. (C) 2004 Optical Society of America

    A monolithic MQW InP/InGaAsP-based comb generator

    Get PDF
    We report a monolithic optical frequency comb generator using quaternary/quaternary multiple quantum well InV/InGaAsP material as phase modulator and gain medium in a Frequency Modulated (FM) laser design. The modulation was generated by quantum confined Stark effect to achieve a comb-line spacing of 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum well intermixing to realize low loss phase and modulation sections. The resulting comb generator produces lines with a spacing exactly given by the modulation frequency, differential phase noise between adjacent lines of -82 dBc/Hz at 1 kHz offset and a comb spectrum width of up to 2 THz

    A monolithic MQW InP-InGaAsP-Based optical comb generator

    Get PDF
    We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multi-section quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span

    Mutual optical injection in coupled DBR laser pairs

    Get PDF
    We report an experimental study of nonlinear effects, characteristic of mutual optical coupling, in an ultra-short coupling regime observed in a distributed Bragg reflector laser pair fabricated on the same chip. Optical feedback is amplified via a double pass through a common onchip optical amplifier, which introduces further nonlinear phenomena. Optical coupling has been introduced via back reflection from a cleaveended fibre. The coupling may be varied in strength by varying the distance of the fibre from the output of the chip, without significantly affecting the coupling time. © 2008 Optical. Society of America

    Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector

    Get PDF
    We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of similar to 1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below. 90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad(2). (C) 2011 Optical Society of Americ
    • …
    corecore