3 research outputs found

    Differences in the Volatile Profile of Apple Cider Fermented with Schizosaccharomyces pombe and Schizosaccharomyces japonicus

    Get PDF
    In this study, two strains of Schizosaccharomyces pombe (NCAIM Y01474(T) and SBPS) and two strains of Schizosaccharomyces japonicus (DBVPG 6274(T), M23B) were investigated for their capacity to ferment apple juice and influence the volatile compounds of cider compared to Saccharomyces cerevisiae EC1118. The ethanol tolerance and deacidification capacity of Schizosaccharomyces yeasts could make them potential substitutes for the commonly used S. cerevisiae starter cultures. Despite different time courses (10-30 d), all strains could complete the fermentation process, and Schizosaccharomyces strains reduced the concentration of malic acid in the apple juice. Results indicated that each yeast exerted a distinctive impact on the volatile profile of the apple cider, giving final products separated using a principal component analysis. The volatile composition of the cider exhibited significant differences in the concentration of alcohols, esters, and fatty acids. Particularly, the flocculant strain S. japonicus M23B increased the levels of ethyl acetate (315.44 +/- 73.07 mg/L), isoamyl acetate (5.99 +/- 0.13 mg/L), and isoamyl alcohol (24.77 +/- 15.19 mg/L), while DBVPG 6274(T) incremented the levels of phenyl ethyl alcohol and methionol up to 6.19 +/- 0.51 mg/L and 3.72 +/- 0.71 mg/L, respectively. A large production of terpenes and ethyl esters (e.g., ethyl octanoate) was detected in the cider fermented by S. cerevisiae EC1118. This study demonstrates, for the first time, the possible application of S. japonicus in cider-making to provide products with distinctive aromatic notes"

    Etiology and Surgical Interventions for Stiff Total Knee Replacements

    No full text
    Stiffness is the most prevalent early local complication of primary total knee replacement, affecting approximately 6 to 7% of patients undergoing surgery. The definition of stiffness after total knee replacement in terms of restriction of the arc of motion has evolved in the last 2 decades as patients and physicians expect better postoperative functional outcomes. Gentle manipulation under anesthesia within 3 to 4 months of surgery improves the range of motion in most patients. However, approximately 1% of patients, including those in which the window for manipulation has passed, will require further surgical interventions, which may include arthroscopy with lysis of adhesions, open debridement with exchange of the polyethylene insert, or revision of one or more components. This review will focus on describing the etiology of the problem and the results of the different surgical interventions for stiffness after total knee replacement
    corecore