36 research outputs found

    Uridine-derived ribose fuels glucose-restricted pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therap

    A multidimensional metabolomics workflow to image biodistribution and evaluate pharmacodynamics in adult zebrafish

    Get PDF
    An integrated evaluation of the tissue distribution and pharmacodynamic properties of a therapeutic is essential for successful translation to the clinic. To date, however, cost-effective methods to measure these parameters at the systems level in model organisms are lacking. Here, we introduce a multidimensional workflow to evaluate drug activity that combines mass spectrometry-based imaging, absolute drug quantitation across different biological matrices, in vivo isotope tracing and global metabolome analysis in the adult zebrafish. As a proof of concept, we quantitatively determined the whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate (HCQ) and measured the systemic metabolic impacts of drug treatment. We found that HCQ distributed to most organs in the adult zebrafish 24 h after addition of the drug to water, with the highest accumulation of both the drug and its metabolites being in the liver, intestine and kidney. Interestingly, HCQ treatment induced organ-specific alterations in metabolism. In the brain, for example, HCQ uniquely elevated pyruvate carboxylase activity to support increased synthesis of the neuronal metabolite, N-acetylaspartate. Taken together, this work validates a multidimensional metabolomics platform for evaluating the mode of action of a drug and its potential off-target effects in the adult zebrafish. This article has an associated First Person interview with the first author of the paper

    Targeting fatty acid β-oxidation impairs monocyte differentiation and prolongs heart allograft survival

    Get PDF
    Monocytes play an important role in the regulation of alloimmune responses after heart transplantation (HTx). Recent studies have highlighted the importance of immunometabolism in the differentiation and function of myeloid cells. While the importance of glucose metabolism in monocyte differentiation and function has been reported, a role for fatty acid β-oxidation (FAO) has not been explored. Heterotopic HTx was performed using hearts from BALB/c donor mice implanted into C57BL/6 recipient mice and treated with etomoxir (eto), an irreversible inhibitor of carnitine palmitoyltransferase 1 (Cpt1), a rate-limiting step of FAO, or vehicle control. FAO inhibition prolonged HTx survival, reduced early T cell infiltration/activation, and reduced DC and macrophage infiltration to heart allografts of eto-treated recipients. ELISPOT demonstrated that splenocytes from eto-treated HTx recipients were less reactive to activated donor antigen-presenting cells. FAO inhibition reduced monocyte-to-DC and monocyte-to-macrophage differentiation in vitro and in vivo. FAO inhibition did not alter the survival of heart allografts when transplanted into Ccr2-deficient recipients, suggesting that the effects of FAO inhibition were dependent on monocyte mobilization. Finally, we confirmed the importance of FAO on monocyte differentiation in vivo using conditional deletion of Cpt1a. Our findings demonstrate that targeting FAO attenuates alloimmunity after HTx, in part through impairing monocyte differentiation

    Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem

    Get PDF
    Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma

    Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease severity

    Get PDF
    There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive model of disease severity. We discover that a panel of metabolites measured at the time of study entry successfully determines disease severity. Through analysis of longitudinal samples, we confirm that most of these markers are directly related to disease progression and that their levels return to baseline upon disease recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19

    B Cell Regulation of CD4 +

    No full text
    corecore