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Using mass spectrometry imaging to map
fluxes quantitatively in the tumor ecosystem

Michaela Schwaiger-Haber 1,2,3,6, Ethan Stancliffe 1,2,3,6,
Dhanalakshmi S. Anbukumar 1,2,3, Blake Sells 1,2,3, Jia Yi1,2,3, Kevin Cho 1,2,3,
Kayla Adkins-Travis 1,2,3, Milan G. Chheda 3,4,5, Leah P. Shriver1,2,3 &
Gary J. Patti 1,2,3,5

Tumors are comprised of a multitude of cell types spanning different micro-
environments. Mass spectrometry imaging (MSI) has the potential to identify
metabolic patterns within the tumor ecosystem and surrounding tissues, but
conventional workflows have not yet fully integrated the breadth of experi-
mental techniques in metabolomics. Here, we combine MSI, stable isotope
labeling, and a spatial variant of Isotopologue Spectral Analysis to map dis-
tributions of metabolite abundances, nutrient contributions, and metabolic
turnover fluxes across the brains of mice harboring GL261 glioma, a widely
used model for glioblastoma. When integrated with MSI, the combination of
ion mobility, desorption electrospray ionization, and matrix assisted laser
desorption ionization reveals alterations in multiple anabolic pathways. De
novo fatty acid synthesis flux is increased by approximately 3-fold in glioma
relative to surrounding healthy tissue. Fatty acid elongation flux is elevated
even higher at 8-fold relative to surrounding healthy tissue and highlights the
importance of elongase activity in glioma.

Recent technological and computational advances in spatial tran-
scriptomics have increased interest in complementary techniques for
characterizing the multi-dimensional architecture of tissues, such as
using mass spectrometry imaging (MSI) to map the distribution of
metabolites and lipids1,2. Unlike liquid chromatography/mass spec-
trometry (LC/MS), where metabolites and lipids are usually measured
from whole samples in bulk, MSI uses a scanning probe to collect
spatially resolved data across a tissue section. Although its chemical
coverage is typically inferior to LC/MS, MSI still has the capability to
measure metabolites and lipids with high sensitivity and molecular
specificity3.

To perform MSI, molecules from tissue sections must be con-
verted into gas-phase ions. Historically, this has been most commonly
achieved by using Matrix Assisted Laser Desorption/Ionization
(MALDI). More recently, however, instruments equipped with a

Desorption Electrospray Ionization (DESI) source have also become
commercially available and are being increasingly used. While it is
possible to conduct MSI experiments with either MALDI or DESI,
molecules can have different ionization efficiencies with each
approach. Thus, depending on the analytes of interest, MALDI may
prove to be more sensitive than DESI, or vice versa. MALDI and DESI
also have unique strengths that might be better suited for specific
applications or workflows. MALDI, for instance, requires that samples
be co-crystallized with a chemical matrix. In addition to complicating
sample preparation, matrix compounds produce peaks in the low-
mass region of the data that can interfere with the detection of
metabolites. DESI does not require a matrix but tends to have less
spatial resolution than MALDI4.

Regardless of the ionization method used, to date, the majority
of MSI studies interrogating spatial metabolism have focused on the
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relative levels of metabolites and lipids (also known as pool sizes).
The impressive number of reports already published, highlights the
important insights that such an approach can yield3,4. Notwith-
standing, there are two notable barriers that limit interpretation of
metabolite and lipid pool sizes as assessed by MSI. First, changes in
the relative abundance of a compound are difficult to determine
between different regions of a tissue section. Among the quantita-
tive challenges is that, unlike LC/MS, MSI simultaneously subjects all
of the molecules within a particular tissue location to the ionization
process without any prefractionation5. Given that the abundance of
other molecules in a sample can influence the ionization efficiency
of the target analyte, changes in MSI signal intensity between tissue
regions do not necessarily correspond to changes in the actual
concentration of the target analyte6. This is particularly a concern
when comparing sample regions of diverse composition, such as
tumor and healthy tissue, where a large number of molecular dif-
ferences may contribute to variable matrix effects. The second
limitation of pool size-based MSI studies is that metabolite abun-
dances do not fully capture the dynamics of metabolism7. Metabolic
pathway fluxes cannot be reliably inferred from metabolite con-
centrations alone8. Similarly, even when the concentration of a
metabolite remains constant, the precursor from which it is derived
might change9.

Combining stable isotope tracers with MSI can help address
both of the aforementioned challenges. In a typical stable isotope
labeling experiment, a biological system is administered a nutrient
that contains a rare isotope such as 13C. Mass spectrometry can then
be used to measure isotopologues, which are molecules that only
differ by their isotopic composition. Heavy isotopologues appear in
metabolites downstream of the labeled nutrient as they incorporate
rare isotopes from the tracer10. Biochemical pathway activities can be
inferred from a combination of the pattern of isotopologue species
present and the rate at which they appear after administration of the
tracer11. Notably, because isotopologues of a metabolite have the
same ionization efficiency, differences in the physicochemical
properties across a tissue will not confound quantitative assessment
of metabolite labeling, unlike metabolite pool sizes12,13. Despite the
appeal, only a limited number of studies have directly administered
labeled compounds to animals in vivo before collecting tissue for
MSI of intact molecules. Themajority of these studies have restricted
analysis to the localization of labeled metabolites14,15. Only a few have
started to extract the metabolic information encoded by per-pixel
isotopologue calculations16–25, and workflows for flux analysis have
not yet been established.

Here, we sought to expand upon MSI approaches using stable
isotope tracers by employing a combination of MALDI, DESI, and ion
mobility spectrometry (IMS) to study glioblastoma, which is themost
common type ofmalignant brain tumor among adults26. We applied a
widely used syngeneic C57BL/6 model of glioblastoma generated by
intracerebral injection of GL261 cells harboring a R132H mutation in
isocitrate dehydrogenase 1 (IDH1). Prior studies have demonstrated
that GL261 tumors exhibit genetic, histologic, and vascular
heterogeneity27–29, but potential changes in metabolic activity
throughout the tumor ecosystem have not been well characterized.
Moreover, the impact that tumors have on the metabolism of sur-
rounding brain regions comprised of healthy tissue remains poorly
understood. In this work, we aimed to investigate the metabolic
architecture of brains harboring glioma by combining stable isotope
labeling and MSI. We developed an approach that we refer to as
Spatial Isotopologue Spectral Analysis (SISA) to assess fractional
fluxes of fatty acid synthesis and elongation on a per-pixel
basis. While absolute fluxes are presented in units of moles per
time30, fractional fluxes are unitless and describe the fraction of a
metabolite pool that has been newly synthesized during the
labeling period31. Fractional fluxes determined by SISA enable

metabolic pathway activities to be quantitatively compared between
different conditions32. In the current study, mapping fractional
fluxes throughout the brain revealed biochemical pathways that
are uniquely activated in tumor tissue and provided an assessment
of the degree of metabolic homogeneity in our model of
glioblastoma.

Results
Approach for imaging with stable isotope tracers
We applied an integrated methodology for this study that leverages
MSI, IMS, and LC/MS to analyze brain tissue. To generate samples,
mice with intracerebral implantation of murine glioma GL261 IDH1
mutant cells were fed a liquid diet containing unlabeled or U-13C glu-
cose for 48 h before harvesting tissue as described previously
(Fig. 1a)33. Central carbon metabolites reach isotopic steady state
within this time range33. GL261 mutant cells were engineered to
express red fluorescent protein (RFP), which allowed us to confirm the
tumor location in sections adjacent to those imaged by DESI and
MALDI or analyzed by LC/MS (Fig. 1b, c). Beyond FDR-controlled
metabolite annotation with METASPACE34, compound identification is
supported by both collisional cross section (CCS) values from IMS in
imaging mode and retention times from LC/MS. In this way, we
benchmarked MSI results against those from established LC/MS
methods, with the limitation that the LC/MS data collapsed spatial
information into an average across bulk tissue.

Accurate quantitation of isotope enrichment is essential to
interpret data from labeled samples. This requires that individual iso-
topologues be resolved fromother signals. In tracer studies performed
with LC/MS, chromatographic separationhelps to remove compounds
that might overlap with isotopologues. In MSI, however, all of the
compounds that are ionized from a given pixel appear in the same
mass spectrum. To ensure that isotopologue peaks were not con-
taminated with interferences in our analysis, we used IMS and unla-
beled control samples. IMS facilitates detection of interferences that
have different CCS values. Unlabeled control samples enable identifi-
cation of signals that have overlappingm/z values with isotopologues
of interest. When a signal that had an m/z value overlapping with an
isotopologue peak appeared in the unlabeled control sample, we
assumed that particular isotopologue could not be accurately mea-
sured from labeled samples and excluded it from our analysis. As
expected due to the intrinsic differences in ionization techniques and
matrix peaks, some signals frombrain tissuewereonly detectedby our
DESI method and others were only detected by our MALDI method
(Supplementary Fig. 1). These differences resulted in a unique set of
interferences with each platform, which influenced our ability to
resolve isotope labeling patterns. To validate that our conclusions
were not affected by such interferences, we performed all experiments
by using both DESI and MALDI MSI.

To analyze our results, we developed an open-source, Python-
based platform for analysis of MSI data from isotopically labeled
tissues that includes methods for image preprocessing (filtering,
segmentation, normalization, etc.), isotopologue image extraction,
13C natural isotope abundance correction, and flux analysis. As shown
by both DESI and MALDI results, our platform is compatible with MSI
data generated with different modalities and accepts the open MSI
data format imzML35. To create isotopologue images, we first
extracted the signal for each detected metabolite isotopologue.
Summing the signals of all isotopologues for each metabolite pro-
vides an estimate of relative pool size distributions, which is the
output of conventional MSI experiments that do not involve stable
isotope labeling. Next, we created fractional isotopologue images by
dividing each isotopologue image by the corresponding summed
isotopologue image for a particular metabolite (Fig. 1d). Fractional
isotopologue images are a per-pixel plot of fractional labeling, f x ,
defined as the abundance of an individual isotopologue, ax , divided
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by the sum of all isotopologues for the metabolite that contains n
carbon atoms as shown in Eq. 136.

f x =
axPn
j =0aj

ð1Þ

A complete description of the data processing procedures devel-
oped and applied in this study is included in the “Methods” section.

In addition to the intrinsic advantage of canceling out pixel-
specific ion suppression, fractional isotopologue images provide spa-
tially resolved insights into metabolic dynamics. Interpretation of
isotopologue fractions allow for spatial indexing of: (i) nutrient utili-
zation, (ii) pathway activities that produce specific isotopologue pat-
terns, and (iii) flux as assessed by performing SISA to measure fatty
acid turnover rates. We present these data after natural isotope
abundance correction togetherwith the summed isotopologue images
to highlight the different information content available from the same
sample for the conventional and isotope labeling imaging domains.

Untargetedmetabolomics identifies differences between tumor
and non-tumor brain hemispheres
For LC/MS-based untargeted metabolomics, 50 µm coronal slices of
brain tissue frommice administered anunlabeled glucose-based liquid
diet were sectioned into the ipsilateral (tumor-containing) and the
contralateral (tumor-free) hemispheres. Metabolites from each hemi-
sphere were extracted separately. After grouping of redundant fea-
tures and removal of background, our analysis resulted in 459
compounds with a coefficient of variation (CV) of ≤20% in at least one
of the two sample groups (see “Methods” section for details). Per-
forming principal component analysis on these compounds showed
clear clustering of the contralateral and ipsilateral tissues (Fig. 2a).
Relative to the non-tumor hemisphere, we found 78 metabolites with
elevated pool sizes and 88 metabolites with decreased pool sizes
(p-value < 0.05) in the ipsilateral tissue (Fig. 2b). Among these altered

compounds were nucleotide-related metabolites such as urate and
UDP-N-acetylglucosamine, fatty acids, and N-acetylaspartate (NAA,
Fig. 2c, d). The major limitation of LC/MS-based approaches such as
the one applied here is that, because tissues are analyzed in bulk, these
methods cannot determine whether metabolites are altered in the
tumor region itself or in surrounding tissue. Furthermore, by only
evaluatingmetabolite pool sizes, an incomplete picture ofmetabolism
is obtained. To better understand metabolic dynamics, such as whe-
ther the level of an intermediate is elevated due to increased pro-
duction or decreased consumption of ametabolite, stable isotopes are
needed. Accordingly, we assessed tissues from animals fed
13C-enriched diets by MSI and LC/MS to obtain more insight into
metabolic changes associated with glioma.

NAA imaging reveals increased TCA cycle cataplerosis in the
tumor region
First, we wanted to demonstrate that our approach provides unique
information compared to conventional imaging of metabolite pool
sizes. NAA is one of the most abundant small molecules in the brain,
where it is synthesized from aspartate and acetyl coenzyme A (acetyl-
CoA, Fig. 3a)37. Among other metabolic fates, NAA can be used as a
precursor to synthesize N-acetylaspartylglutamate or it can be degra-
ded to provide a source of acetyl-CoA38,39. NAA synthesis has been best
studied in neurons and is a knownmarker of neuronal health38. Of note,
NAA has also been shown to be produced by GL261 cells in vitro40.
Indeed, when the GL261 cells used in this study were cultured in
labeled glucose, we observed production of labeled NAA (Supple-
mentary Fig. 2). Evaluation of labeled brain tissue by LC/MS showed
that the most abundant isotopologue of NAA is M6, indicating that
much of the NAA pool is derived from fully labeled aspartate and
acetyl-CoA (Fig. 3b). Consistent with this result, we found that nearly
40% of aspartate incorporated four 13C-labels from glucose (Fig. 3c).
When brain tissue was analyzed with DESI-IMS mass spectrometry,
putative NAA isotopologues co-migrated (except for M1), and CCS

Stable Isotope Labelinga Mass Spectrometry
Imaging DESI & MALDI

cb LC/MS-based Untargeted Metabolomics

unlabeled
or

U-13C
Glucose diet

Orthotopic brain 
tumor with RFP+

GL261 IDH1 mt cells

RFP signal to 
confirm tumor site

Data Files Data Filtering Data Processing Final Output

g(t)

Tumor & non-tumor 
hemisphere

d Data Analysis Workflow

Fig. 1 | Mass spectrometry imaging with stable isotope labeling workflow.
aMice with orthotopic brain tumors were fed an unlabeled or U−13C glucose-based
liquid diet for 48h before being imaged. b Collected brains were cryo-sectioned
and the tumor site was confirmed with fluorescence microscopy by using the red
fluorescent protein (RFP) expressed by the implanted GL261 IHD1 mutant cells.
Tumor and non-tumor hemisphere were analyzed by LC/MS, which revealed dif-
ferences in metabolite levels. c Mass spectrometry imaging analysis of unlabeled
and labeled tumor brain sections by DESI and MALDI. d Data analysis workflow.
Vendor-specific data files are first converted into the open-source imzML format.

METASPACE34 (https://metaspace2020.eu) is then used to annotate peaks on the
basis of accuratemass and natural abundance isotope patterns. FDR-based filtering
enables determination of reliable target metabolites. The data are then processed
in a targetedway through theuseof a Pythonpackage thatwedeveloped toprocess
MSI data. The software can be run online within Google Colaboratory, which does
not require any local installation of Python or related packages. The output of the
analysis software is normalized isotopologue images (corrected for natural isotope
abundance). Additionally, Spatial Isotopologue Spectral Analysis (SISA) can be
performed on each pixel to yield the fractional biosynthetic flux term, g(t).
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data closely matched reference values (Supplementary Fig. 3).
Assessment ofmigration times increased our confidence inmetabolite
identification and signified that theM1 of NAA is contaminated with an
interfering ion.

DESI MSI images of total NAA intensities were generated from
unlabeled (Fig. 3d) and labeled (Fig. 3e) brains, both harboring glio-
mas. For animals fed U-13C glucose, images were obtained by summing
all isotopologues of NAA, except for M1. Summing the isotopologues
collapses the data into the same information domain yielded by
experimentswithout stable isotope labeling. Fluorescencemicroscopy
was used to confirm the location of the tumor (Supplementary Fig. 4).
The results show lower NAA signal in the tumor relative to other tissue
regions, which is consistent with a decreased local concentration of
NAA and reduced neuronal health/populations in the tumor region.

From the brains of mice administered isotope tracers, iso-
topologue plots can be extracted from regions of interest (ROIs), as

shown in Fig. 3e. In addition to comparing fractional labeling from
ROIs, we found it useful to consider fractional carbon-atom labeling.
Fractional labeling and fractional carbon-atom labeling are calculated
differently and provide unique information. Fractional labeling is
determined by Eq. 1 and describes the amount of ametabolite that has
a given number of 13C-labels (e.g., the fraction of a metabolite with M2
labeling). Fractional labeling is useful to compare the relative activities
of biochemical pathways that produce different isotopologues41.
Fractional carbon-atom labeling (L), on the other hand, describes the
fraction of carbon in ametabolite that is 13C-labeled according to Eq. 2.

L=

Pn
j =0j � aj

n
Pn

j =0aj
ð2Þ

Fractional carbon-atom labeling has been used to assess the total
carbon contribution of a uniformly 13C-labeled tracer to a given
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Fig. 2 | Untargeted LC/MS-based metabolomics of unlabeled brains. Ipsilateral
(tumor) and contralateral (non-tumor) hemispheres were extracted and analyzed
by using untargeted metabolomics. a Principal component analysis of all detected
compounds with a CV of less than or equal to 20% in at least one of the two sample
groups show separation of the ipsilateral (black) and contralateral (gray) hemi-
spheres, with tight clustering of the quality-control samples (orange).bHeatmapof
metabolites after filtering based on a CV of ≤20% in at least one of the two sample
groups, and a p value ≤0.05 (not corrected for multiple hypothesis testing).

c Nucleotide-related metabolites, d fatty acid-related metabolites and N-acet-
ylaspartate (NAA) show alterations between the two brain hemispheres. Data are
from five unlabeled mouse brains, c +d show means ± SDs of five unlabeled mice.
UDP-GlcNAc uridine diphosphate-N-acetylglucosamine, UDP-GlcA uridine dipho-
sphoglucuronate, UDP uridine diphosphate, SAM S-Adenosylmethionine, m6A
N6-Methyladenosine, CDP-choline cytidine 5′-diphosphocholine, AA arachidonate,
DPA docosapentaenate. Source data are provided as a Source Data file.
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metabolite42. When comparing two ROIs, indicated by a black square
for the tumor region and a gray square for the contralateral non-tumor
region in Fig. 3e, we found differences in the fractional carbon-atom
labeling from glucose carbon to NAA synthesis. We determined that
the fractional carbon-atom labeling was lower in the ipsilateral ROI
(41.8%) compared to the contralateral ROI (51.8%). As the M1 iso-
topologue of NAA was contaminated, this isotopologue was excluded
from the fractional carbon-atom labeling calculation. A per-pixel ana-
lysis of isotopologue fractional abundances also showed more M6
labeling in the non-tumor region compared to the tumor region
(Fig. 3f). These data are consistent with increased cataplerosis in the
tumor region, with TCA cycle intermediates being used to synthesize
macromolecules required for proliferation before they can undergo
multiple turns of 13C-label incorporation.

A challenge of imaging NAA by DESI is that its low level in the
tumor region is near the limit of detection. Although the average iso-
topologue fractions for NAA were similar when assessed by DESI and
LC/MS (Supplementary Fig. 5), we are unable to validate the spatial
labeling patterns obtained from DESI with LC/MS alone. Hence, to
provide additional confidence in our images of isotopologues frac-
tional abundances, we analyzed the same brain tissues by MALDI

(Fig. 4). Note that the brain samples shown in themain figures are from
separate mice. We point out that, when comparing DESI to MALDI,
different metabolites can ionize with different efficiencies4. For NAA
specifically, MALDI analysis with N-(1-Naphthyl) ethylenediamine
dihydrochloride (NEDC) matrix proved to be superior because it had
better sensitivity and no interfering ions were measured from unla-
beled brains. Our MALDI results confirmed depleted levels of NAA in
the tumor (Fig. 4a) and increased M6 NAA labeling in non-tumor
regions (Fig. 4b, c) that indicate impaired neuronal health and
increased TCA cycle cataplerosis.

Adenosine monophosphate imaging highlights changes in
purine biosynthesis
Next, we wanted to extend our analysis to probe other aspects of
tumor metabolism on a per-pixel basis. Adenosine monophosphate
(AMP) was an attractive target analyte because its labeling pattern
simultaneously encodes information related to the pentose phosphate
pathway (PPP) and one-carbonmetabolism (Fig. 5a). AMP contains ten
carbons,five of which come from ribose and five ofwhich come from a
purine base. As shown in Fig. 5b, the ribose can be derived from glu-
cose via the oxidative PPP. The purine carbons can also be derived

Fig. 3 | N-Acetylaspartate (NAA) isotopologue imaging with DESI. a Aspartate
N-acetyltransferase (Asp-NAT) synthesizes NAA from aspartate and acetyl-
coenzymeA (acetyl-CoA). Black and gray circles denote carbons derived from dif-
ferent molecules. b + c LC/MS isotopologue fractions from labeled tumor brains
show enrichment of high-mass isotopologues for b NAA and c aspartate. d DESI
imaging shows total NAA pool size in an unlabeled tumor brain. e DESI imaging of
NAA pool size (from summing the intensity of all isotopologues except M1) in the
labeled tumor brain, with two regions of interest (ROI) selected for comparison of
NAA labeling patterns. The ROI contralateral to the tumor shows a higher M6
compared to the ROI in the tumor region (ipsilateral). The same pool size trends
can be seen in the unlabeled and labeled brain. f Isotopologue fractional images of

NAA for both an unlabeled (top) and a labeled (bottom) tumor brain. Labeling
patterns have been natural isotope abundance corrected. Due to the low intensity
of NAA in the tumor region, small fluctuations in the baseline measured from
unlabeled brain tissue lead to apparent M5 and M6 signal. To validate that these
signals are noise and do not affect our biological conclusions, we repeated the
analysis with MALDI where NAA signal intensity is higher and no background in
unlabeled brain is detected. The MALDI counterpart from two additional brains is
shown in Fig. 4. Data in b + c are shown as means ± SDs for n = 4 (NAA) and n = 3
(aspartate) biological replicates. The isotopologue plots in e show data from all
pixels within the ROI (>100) as mean± SD. Source data are provided as a Source
Data file.
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from glucose (Fig. 5c). One of the purine carbons comes from bicar-
bonate, which can originate from the decarboxylation of glucose. The
remaining carbons can come from serine and glycine through a series
of reactions starting with the glycolytic intermediate
3-phosphoglycerate and involving one-carbon metabolism. These
pathways provide biochemical routes for producing each iso-
topologue of AMP (M1-M10) from the tissues of animals fed U-13C
glucose diets.

We first evaluated AMP in unlabeled (Fig. 5d) and labeled (Fig. 5e)
glioma brains by using DESI MSI. Notably, unlabeled samples did not
produce anymajor interferenceswith AMP isotopologues (Fig. 5f), and
IMS analysis indicated co-migration of AMP isotopologues in labeled
specimens.Moreover, the CCS data of AMP closely matched reference
values (Supplementary Fig. 3b). Examination of the isotopologue pat-
terns from AMP revealed diffuse M5 labeling across the tissue and
indicated oxidative PPP activity throughout the brain, which is con-
sistentwithpriorwork suggesting that theoxidative PPP is essential for
healthy brain function43. In contrast to the patternofM5,we found that
isotopologues M6-M9 were uniquely elevated in glioma compared to
healthy tissue (Fig. 5f).Whenwe repeated the analysis by usingMALDI,
which had better signal to noise for AMP than DESI, we observed
comparable patterns in the fractional isotopologue images (Fig. 6).
MSI labeling data averaged from the whole brain were also in agree-
ment with LC/MS data from bulk tissue (Supplementary Fig. 5). The
results demonstrate that more AMP is synthesized from glucose in
glioma compared to healthy tissue. Higher M6-M9 labeling of AMP in
the tumor indicates that more glucose is used for de novo purine
biosynthesis in that region, with glucose providing an increased con-
tribution to glycine and carbon units for one-carbon metabolism.
These findings are consistent with cancer cells having an increased
demand for one-carbon units to synthesize nucleotides that are nee-
ded for proliferation, as has been suggested previously44. It is inter-
esting topoint out thatdenovopyrimidine synthesis has recently been
described as a potential target for IDH mutant gliomas45 and IMP

dehydrogenase-2 has been found to promote tumorigenesis in
glioblastoma46.

Mapping de novo lipogenesis flux
Palmitate, and other lipids derived from it, are essential for pro-
liferating cells to form new membranes. Here, we wished to evaluate
whether glioma fulfill their lipid needs by de novo lipogenesis or by
consuming exogenous lipids from the environment. Given that pal-
mitate is the major end product of fatty acid synthase, it is well suited
to assess the rate of de novo lipogenesis in cells and tissues47. Palmitate
is synthesized in the cytosol from eight acetyl-CoA molecules that are
primarily derived from citrate via ATP-citrate lyase (Fig. 7a). As
expected, LC/MS analysis shows that citrate and palmitate incorporate
glucose carbon (Fig. 7b, c).

Wefirst usedDESI to imagepalmitate from thebrains of unlabeled
and labeled mice harboring glioma (Fig. 7). Data from IMS and unla-
beled samples demonstrated that theM1,M4, andM5 of palmitate had
interferences, requiring that these isotopologues be excluded from
our DESI analysis (Supplementary Figs. 3c and 6). To ensure that the
exclusion of these isotopologues did not affect the results, we repe-
ated the analysis by usingMALDI to image palmitate from the brains of
glioma mice (Fig. 8). Unlike DESI, no major interferences were
observed for palmitate isotopologues in our MALDI data (Supple-
mentary Fig. 7). Interestingly, DESI and MALDI provided inconsistent
pool-size results for palmitate. This included pool sizes assessed from
unlabeled tissues and those obtained by summing palmitate iso-
topologues (ignoring M1, M4, and M5 in DESI data). With DESI, pal-
mitate signal was elevated in the tumor relative to healthy tissue
regions (Fig. 7d, e and Supplementary Fig. 6). In MALDI experiments,
on the other hand, palmitate signal was depleted in the tumor relative
to other brain regions (Fig. 8a, b and Supplementary Fig. 7). Mean-
while, the pool size of palmitate between the tumor and non-tumor
hemispheres was the same when measured by LC/MS (see Supple-
mentary Fig. 5). These data underscore that variable ionization effects

Fig. 4 | N-Acetylaspartate (NAA) isotopologue imaging with MALDI. a MALDI
imaging shows total NAA pool size in an unlabeled tumor brain. b NAA pool size in
the labeled tumor brain, with two regions of interest (ROI) selected for comparison
of NAA labeling patterns. The ROI contralateral to the tumor shows a higher M6
compared to the ROI in the tumor region (ipsilateral). The same pool size trends
can be seen in the unlabeled and labeled brain. c Isotopologue fractional images of

NAA for both an unlabeled (top) and a labeled (bottom) tumor brain. Labeling
patterns have been natural isotope abundance corrected. The unlabeled brain
shows no signal for labeled isotopologues. The M6 in the labeled brain shows a
decrease in the tumor region, as expected from the extracted ROIs. The DESI
counterpart from twoadditional brains is shown in Fig. 3. The isotopologue plots in
b show data from all pixels within the ROI (>100) as mean ± SD.
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between tissue regions of different composition can make pool-size
data unreliable. We wish to emphasize that relative pool-size dis-
tributions have no effect on our ability to interpret labeling data.
Analysis of labeling data only requires quantitation of isotope enrich-
ment, which are not influenced by matrix effects. Indeed, when data
from whole-brain tissue were averaged together, the same trend in
palmitate isotopologue abundances was observed from DESI, MALDI,
and LC/MS (Supplementary Fig. 5). The only notable difference was
that isotopologues fromDESIwere lower due to backgroundpalmitate
from DESI slides (Supplementary Fig. 8). When considering endogen-
ous labeling, background palmitate signal merely creates a dilution
factor and does not impede comparisons of relative fluxes between
tumor and healthy tissue. In both DESI and MALDI images, palmitate
had higher labeling in the tumor compared to other regions.

Although isotopic steady state was achieved in central carbon
metabolites within the 48 hours that mice were fed U-13C glucose,
isotopic steady statewas not reached for longer-livedmetabolites such
as palmitate and other fatty acids. Flux analysis for isotopically non-
stationary pathways typically usesmultiple time points to characterize
the dynamics of label incorporation, which enables flux to be inferred

through the construction of ordinary differential equations48. For
some isotopically nonstationarymetabolites such as those synthesized
as homopolymers, however, fractional label incorporation encodes
flux information that is recoverable by using specialized models even
from a single time point31,49. Given that all sixteen carbons in palmitate
are derived from the acetyl group of eight acetyl-CoA precursors, we
sought to apply a spatial variant of such a specialized model known as
isotopologue spectral analysis (ISA, also known as isotopomer spectral
analysis) to map de novo lipogenesis fractional turnover flux on a per-
pixel basis across a single MSI dataset.

The standard ISA approach models the isotopologue distribution
of a biopolymer as a function of: (i) the fractional contribution from
labeled compound to the biosynthetic monomer pool, D, and (ii)
polymer flux, represented as fractional turnover within the labeling
time, g(t)31,49. This enables the biosynthesis rate to be separated from
nutrient utilization. Derived from eight acetyl-CoA monomers, the
palmitate isotopologue fractional distribution represents an eighth-
order polynomial in the ISA model. Each possible isotopologue frac-
tional distribution for palmitate can be evaluated to determine a
unique set ofD and g(t) values. Conventionally, applying the ISAmodel

Fig. 5 | Adenosine monophosphate (AMP) isotopologue imaging with DESI.
a Glucose is converted to ribose 5-phosphate (R5P) via the oxidative pentose
phosphate pathway (oxPPP). Glucose also provides a source of serine, glycine,
and CO2 (one of which is shown). R5P, serine, glycine, and CO2 can be used for
purine synthesis to make inosine- monophosphate, which is then converted to
AMP. b + c LC/MS isotopologue fractions from labeled tumor brains show highM5
enrichment ofbR5P and cAMP isotopologues.dDESI imaging shows the total AMP
pool size in an unlabeled tumor brain. e DESI imaging of AMP pool size in the
labeled tumor brain. Two regions of interest (ROI) selected for comparison of AMP
labeling patterns showhigher enrichment in heavier isotopologues from the tumor
region. f Isotopologue fractional images of AMP for both the unlabeled (top) and
labeled (bottom) brains. Labeling patterns have been natural isotope abundance

corrected. M5 R5P shows a consistent distribution across the whole brain but 13C
labeling of higher isotopologues in the tumor region point to increased usage of
glucose for purine synthesis. Note the different intensity scale for M6 to M10
compared to the other isotopologues. Given the low level of signal intensity being
plotted for M6 to M10, small fluctuations in the baseline lead to some noise in
unlabeled brain. We note that the patterns we observe in the labeled brain are
specific to the tumor region, indicating that they are not a result of noise. None-
theless, to validate our biological conclusions, we repeated the experiment with
MALDI where no background in unlabeled brain is detected. The MALDI counter-
part from two additional brains is shown in Fig. 6. Data in b + c are shown as
means ± SDs for n = 4 biological replicates. Source data are provided as a Source
Data file.
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requires known isotopic labeling in the tracer monomer pool, which is
acetyl-CoA derived from U-13C glucose here31. The total biosynthetic
pool utilized to synthesize palmitate is then represented as the fraction
of the acetyl-CoA pool that originates from the tracer (D) and the
isotopic labeling of acetyl-CoA that is derived from glucose. None of
the mass spectrometry methods that we applied in this study enabled
directmeasurement of acetyl carbon labeling in acetyl-CoA.While cells
labeled in culture with U-13C glucose mostly produce acetyl-CoA in
which the acetyl group is M0 or M2, the M1 species tends to be more
prevalent in vivo, possibly due to increased malic enzyme activity or
recycling of endogenous CO2

33,50–52. Indirect evidence of M1 and M2
acetyl-CoA in our animals is provided by citrate and palmitate labeling
as measured by LC/MS from bulk tissue (Fig. 7b, c). Moreover, in our
experiments, the different anatomical regions of the tissue will have
altered glucosemetabolism. As the labelingof acetyl-CoA is dependent
on the activity of multiple pathways upstream of acetyl-CoA, we
therefore cannot know or assume a single acetyl-CoA labeling pattern
for use with the standard ISA approach. As an alternative, we devel-
oped a modified version of ISA that we refer to as SISA. Instead of
inferring D from fixed tracer labeling, we infer the isotopic labeling of
the entire monomer pool directly along with g(t) at each pixel. Thus,
calculated g(t) rates are independent of each animal’s tracer uptake.
This modification to ISA, while introducing an additional unknown to
infer, does not reduce the accuracy or increase the sensitivity of the
flux analysis to noise when compared to conventional ISA (Supple-
mentary Fig. 9). Further details on SISA can be found in the Methods.

After applying SISA to the labeled palmitate MSI data, the frac-
tional turnover flux at 48 h, gpalm(48 h), was calculated at each pixel
(Figs. 7f and 8c). Data from both DESI and MALDI show that palmitate
turnover is significantly higher in tumor compared to other tissue.
When using data from MALDI, which is less diluted by unlabeled pal-
mitate background signal, we observe that ~55% of the observed pal-
mitate pool for the tumor was synthesized within the 48 h timescale of
tracer administration, while only ~20% was newly synthesized in non-
tumor tissue. Replicate data for three additional labeled mice are

shown in Supplementary Figs. 10 and 11. Statistical results for the four
labeledmice are shown in Figs. 7g and 8d. To ensure these differences
were not due to propagated measurement errors, we performed an
error analysis and found that the expected absolute gpalm(48 h) error is
0.008 ± 0.011 while our measured gpalm(48 h) values range from 0.1 to
0.3 (see Supplementary Fig. 9). This analysis demonstrates that tech-
nical error is not likely to be a large contributor to the observed spatial
variation. As validation, we also compared gpalm(48 h) and the calcu-
lated distribution of acetyl-CoA isotopologues fromMSI data with the
ISA results from the LC/MS analysis of corresponding extracted tissue
and found the same trends (Supplementary Fig. 12).

From MSI data alone, we cannot rule out the possibility that pal-
mitate is synthesized in another tissue (e.g., the liver) and subsequently
transported to the brain where it is preferentially consumed by the
tumor. Disruption of the blood-brain barrier within the tumor, for
example, could make circulating lipids more accessible to glioma and
potentially contribute to differential labeling patterns at the tumor
site53. We expected that, if increased labeling of palmitate in glioma
was mainly a result of tumor consuming labeled lipid from the circu-
lation, the labeling of lipid in plasma would match the labeling of lipid
in the tumor. By using palmitoylcarnitine as a surrogate for palmitate
labeling to avoid potential palmitate background47, we compared
the isotopologuepatterns in serum to those in brain and foundnotable
differences (Supplementary Fig. 13). We conclude that increased de
novo lipogenesis in glioma is due to increased local fatty acid synthesis
flux rather than increased uptake.

Mapping fatty acid elongation flux
In addition to palmitate, we extended our flux imaging approach to
stearate, an important precursor for very long chain fatty acids in brain
and the most abundant fatty acid in brain phospholipids. Indeed, we
found multiple very long chain fatty acids to be altered in our untar-
geted metabolomics comparison of ipsilateral and contralateral brain
tissue (Fig. 2). Similar to de novo synthesis of palmitate from acetyl-
CoA, stearate is synthesized via elongation of palmitate through a

Fig. 6 | Adenosine monophosphate (AMP) isotopologue imaging with MALDI.
aMALDI imaging shows the total AMPpool size in anunlabeled tumor brain.bAMP
pool size in the labeled tumor brain. Two regions of interest (ROI) selected for
comparison of AMP labeling patterns show higher enrichment in heavier iso-
topologues from the tumor region. c Isotopologue fractional images of AMP for

both the unlabeled (top) and labeled (bottom) brains. Labeling patterns have been
natural isotope abundance corrected. Note the different intensity scale for M6 to
M10 compared to the other isotopologues. The DESI counterpart from two addi-
tional brains is shown in Fig. 5.

Article https://doi.org/10.1038/s41467-023-38403-x

Nature Communications |         (2023) 14:2876 8



series of enzymatic reactions (Fig. 9a). In contrast to palmitate synth-
esis in the cytosol, fatty acid elongation happens in the endoplasmic
reticulum (ER)54. Notwithstanding, LC/MS measurement of bulk brain
tissue containing glioma show a proportion of stearate in which all of
its carbons are labeled, suggesting that the pool of acetyl-CoA used to
elongate palmitate is enriched with 13C (Fig. 9b).

As we did for palmitate, we used DESI and MALDI MSI to mea-
sure stearate from the brains of unlabeled and labeled mice
(Figs. 9–10). Data from IMS and unlabeled samples did not reveal any
interferences (Supplementary Figs. 3d, 14, and 15), thereby allowing
us to use all of the stearate isotopologues in our analysis. Similar to
MSI data from palmitate, DESI and MALDI provided inconsistent
results about stearate pool size (Figs. 9c, d and 10a, b and Supple-
mentary Figs. 14 and 15). In DESI, images from both the unlabeled and
labeled samples indicated increased stearate levels in glioma com-
pared to other tissue regions. MALDI provided the opposite pattern,
with stearate signal being lower in the tumor. As for palmitate, LC/MS
data showed no differences in stearate pool size between the tumor
and non-tumor hemispheres (see Supplementary Fig. 5). These
results further underscore the challenges of comparing the levels of
metabolites across regions of tissue with diverse composition. In
contrast to pool-size data, the same trends in stearate isotopologue

abundances were observed from DESI, MALDI, and LC/MS (see Sup-
plementary Fig. 5)

We then extended SISA to map the fractional flux of palmitate to
stearate elongation. Palmitate, generated from at most 8 tracer-
derived acetyl-CoA molecules, and stearate, generated from an elon-
gation step, are not treated identically by SISA. Specifically, elongation
of unlabeled palmitate with a labeled acetyl-CoA will produce an M2
stearate molecule. As there will be a large pool of unlabeled palmitate
at the beginning of the experiment, the M2 peak will be higher than
that expected from complete de novo synthesis of stearate from
labeled acetyl-CoA. Thus, we modified the SISA model to include an
elongation term of unlabeled palmitate eST(48 h) in addition to the de
novo synthesis term gST(48 h). As both terms reflect newly synthesized
stearate, the fractional biosynthetic flux is (g+ e)ST (48 h). Further
details are provided in the Methods. In assessing the biosynthetic flux
spatially for labeled brain, strikingly, only the tumor region shows a
high (g + e)ST (48 h) from both DESI and MALDI data (Figs. 9e and
Fig. 10c). Replicate data for three additional labeledmice are provided
in Supplementary Figs. 10 and 11. Statistical results for the four labeled
mice are provided in Figs. 9f and 10d. When using data from MALDI,
stearate shows on the order of 40% fractional synthesis at the tumor,
compared to ~5% in the rest of the brain.
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Fig. 7 | Palmitate (palm) isotopologue imaging with DESI. a Acetyl-CoA gener-
ated from citrate by ATP-citrate lyase (ACLY) is utilized by fatty acid synthase (FAS)
for de novo palmitate synthesis. Black and gray circles denote carbons derived
from different molecules. b + c LC/MS isotopologue fractions from labeled tumor
brains show enrichment of high mass isotopologues of b citrate and c palmitate in
the bulk tissue, suggesting acetyl-CoA derived from citrate for fatty acid synthesis
will be enriched in 13C.dDESI imaging shows palmitate pool size in unlabeled tumor
brain. eDESI imaging of labeled tumor brain indicates palmitate pool size, with two
regions of interest (ROI) selected for comparison of palmitate labeling patterns.
The tumor (ipsilateral) region shows higher labeling than the non-tumor

(contralateral) region, with both ROIs having higher enrichment in even iso-
topologues. f Flux image after applying SISA to the labeled tumor brain shows the
palmitate turnover, gpalm(48 h), is higher in the tumor region. g Comparison of
gpalm(48 h) in the tumor site versus non-tumor tissue in four biological replicates.
Data shown as mean ± SD. p value from paired t test (two-tailed). Lipogenic flux
images for all four biological replicates with correspondingmicroscopy images are
shown in Supplementary Fig. 10. The MALDI counterpart from two additional
brains is shown in Fig. 8. Data in b + c are shown as means ± SDs for n = 3 (citrate)
and n = 4 (palmitate) biological replicates. Source data are provided as a Source
Data file.
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Discussion
When performing metabolomics, LC/MS is generally recognized as
the gold-standard platform. A barrier hindering the growth of MSI is
the challenge of interpreting DESI and MALDI data. Not only is quan-
titative assessment of relative signal intensities complicated by vari-
able matrix effects across a tissue section, but pathway activities
cannot be derived from metabolite pool sizes alone. In LC/MS, a suite
of experimental approaches and informatics techniques have been
established that leverage stable isotope tracers to evaluate the
dynamics ofmetabolismquantitatively. To date, however, comparable
MSI experiments have been limited by a lack of established workflows
and computational resources. In this work, we extended a collection of
established tools typically used for the analysis of LC/MS-based
metabolomics data to be compatible with MSI data. Beyond enabling
SISA, the software we developed introduces basic functions for ana-
lyzing MSI data (e.g., natural abundance correction and automated
generation of fractional isotopologue images) that we anticipate will
be broadly applicable to a wide range of future studies. While we only
processed data from DESI and MALDI here, the software is designed
for all forms of MSI data that can be converted to the open imzML
format, and we expect the use of multiple imaging modalities to pro-
vide complementary information. The software is freely available and
can be found on GitHub (https://github.com/e-stan/imaging).

Whether an experiment uses LC/MS or MSI to measure iso-
topically labeled samples, it is critical that individual isotopologues be
resolved for accurate interpretation of metabolic dynamics. Although
isotopologue interferences can occur in LC/MS55, they tend to be less
problematic because chromatographic separation limits the number
of metabolites that appear in the same mass spectrum. In MSI, on the
other hand, all of the metabolites and lipids in a specific region of
tissue are simultaneously ionized. This leads to thousands of peaks in
the resulting mass spectrum. The probability of having overlapping
m/z signals therefore increases considerably, particularly when sam-
ples are isotopically labeled (Supplementary Fig. 16). In this work, we

applied two strategies to identify isotopologue interferences. First, we
used IMS to validate that all of the isotopologues for a given com-
pound co-migrated. Second, we processed unlabeled samples and
labeled samples in parallel to ensure that no ions in the unlabeled
samples had m/z values overlapping with an isotopologue in the
labeled samples. Even when using an instrument with over 43,000
mass resolving power at m/z= 554, we found a striking number of
isotopologue interferences, underscoring the importance of IMS and
unlabeled samples for filtering. We note that some isotopologue
interferences only occurred in specific regions of tissue, such as the
tumor. When not excluded, they led to spatially interesting but bio-
logically misleading labeling patterns across the tissue. Given these
challenges, MSI datasets from isotopically labeled tissues are best
evaluated by targeted analysis and require validation of results to
avoid erroneous conclusions.

In theory, MSI experiments performed on isotopically labeled
samples do not forfeit any information content thatwould beobtained
from an unlabeled experiment, namely metabolite pool sizes. To
approximate pool size from labeled samples, the intensities of all
isotopologues for a given target compound can be summed to col-
lapse the data into a pseudo-unlabeled format. We found such an
approach to be generally effective, except for metabolites with low
abundance where summing the signals of multiple low-intensity iso-
topologues propagated measurement error. Additionally, for meta-
bolites of low abundance or metabolites with rapid turnover, the time
required to isolate tissues from animals may cause disruption of
metabolite pool sizes before quenching metabolism. In our study,
brains were harvested and immediately transferred to dry ice.
Although such a protocol is commonly used in metabolomics, it is
slower to quench metabolism than other methods such as immersion
freezing, funnel freezing, freezeblowing, andhead-focusedmicrowave
fixation56. Some reports have recommended quenchingmetabolism at
harvestwith the aforementioned techniques tominimize post-mortem
changes in metabolite levels57. Notwithstanding, a strength of the
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Fig. 8 | Palmitate (palm) isotopologue imaging with MALDI. a MALDI imaging
showspalmitate pool size in unlabeled tumorbrain.b Palmitate pool size of labeled
tumor brain, with two regions of interest (ROI) selected for comparison of palmi-
tate labeling patterns. The tumor (ipsilateral) region shows higher labeling than the
non-tumor (contralateral) region, with both ROIs having higher enrichment in even
isotopologues. c Flux image after applying SISA to the labeled tumor brain shows

that palmitate turnover, gpalm(48 h), is higher in the tumor region. d Comparison of
gpalm(48 h) in the tumor site versus non-tumor tissue in four biological replicates.
Data shown as mean ± SD. p value from paired t test (two-tailed). Lipogenic flux
images for all four biological replicates with correspondingmicroscopy images are
shown in Supplementary Fig. 11. TheDESI counterpart from two additional brains is
shown in Fig. 7. Source data are provided as a Source Data file.
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approach that we applied to analyze isotope labeling data is that it
does not rely upon pool-size information, which is historically difficult
to quantitate byMSI. We provide two examples where, due to variable
matrix effects, DESI and MALDI indicate opposite trends with respect
to whether the compound is up or down in the tumor compared to
healthy tissue.

A benefit of using MSI to study cancer metabolism is that bio-
chemical activities within a tumor and surrounding tissues can be
mapped spatially in situ. The approach presents an exciting opportu-
nity to determine what effects local changes in environment (e.g., due
to differences in nutrient availability, interactions with healthy tissues,
etc.) have on the metabolism of discrete regions of the tumor. In this
work, we implanted GL261 cells in the brains of mice to study a pre-
clinical model of glioblastoma. Previous work has established that
brain tumors formed fromGL261 cells exhibit functional andhistologic
heterogeneity27–29,58,59. The metabolic phenotypes we examined here,
however, showed a notable degree of homogeneity at the spatial
resolution profiled.

An attractive feature of SISA is that it allows for quantitative
analysis of lipid metabolism from brain tissue in vivo. As cancer cells
within glioblastoma proliferate, they require lipids to form new
membranes60. They can either obtain lipids by taking them up from
their extracellular environment or by synthesizing them de novo.
Several reports have provided support for the former, showing that

multiple types of cancer cells avidly consume lipids in vitro and
in vivo61–64. A recent study, on the other hand, concluded that breast
cancer cells rely on fatty acid synthesis when they metastasize to the
brain65. Here, we wished to determine the origin of lipids in a widely
used glioblastoma model using immunocompetent mice. The
GL261 cells we implanted harbored an R132H mutation in IDH1, which
causes mutant enzyme to produce the oncometabolite
2-hydroxyglutarate (2HG). Synthesis of 2HG competes with de novo
lipogenesis for NADPH, therebymaking it metabolically advantageous
for mutant IDH1 cells to take up lipids rather than synthesize them66.
Yet, despite the potential fitness cost, we found that the gliomas syn-
thesized approximately half of their palmitate de novo in 48hours. For
comparison, healthy tissue only synthesized ~20% of their palmitate
over the same time scale. Hadweonly used LC/MS to analyze dissected
tumors in bulk, we could not rule out the possibility that only portions
of the tumor were synthesizing palmitate over the 48 hours sampled,
butMSI data indicate that is not the case. DESI andMALDI experiments
reveal that tumor cells within most pixels of glioma are synthesizing
palmitate at relatively similar rates, which is nearly three times faster
than healthy brain tissue. These findings are consistent with genetic
evidence from previous studies of glioblastoma (Supplementary
Fig. 17)67. Interestingly, compared to de novo lipogenesis flux, SISA
revealed an even greater difference in palmitate elongation flux, which
was approximately eight times higher in tumor tissue compared to
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Fig. 9 | Stearate isotopologue imaging with DESI. a Acetyl-CoA is utilized by
enzymes in the membrane of the endoplasmic reticulum (ER) for elongation of
palmitate. b LC/MS isotopologue fractions from labeled tumor brains show
enrichment of high mass isotopologues of stearate in the bulk tissue. c DESI ima-
ging shows stearate pool size in the unlabeled tumor brain. d DESI imaging of the
labeled brain indicates stearate pool size, with two regions of interest (ROI)
selected for comparisonof stearate labelingpatterns. The tumor (ipsilateral) region
shows higher labeling than the non-tumor (contralateral) region. e Flux image after

applying SISA to a labeled tumor brain shows that the distribution of stearate
turnover, (g + e)ST(48 h), is higher in the tumor region. fComparisonof (g + e)ST(48 h)
in the tumor site versus non-tumor tissue in four biological replicates. Data shown
as mean ± SD. p value from paired t test (two-tailed). Elongation flux images for all
four biological replicates with corresponding microscopy images are shown in
Supplementary Fig. 10. TheMALDI counterpart fromtwoadditional brains is shown
in Fig. 10. Data in b are shown for four biological replicates as mean ± SD. Source
data are provided as a Source Data file.
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healthy brain regions. This result is consistent with there being a
greater demand for eighteen carbon acyl chains in proliferating cancer
cells compared to sixteen carbon acyl chains due to their higher pre-
valence inmembrane phospholipids68. It also suggests that, while fatty
acid synthesis was demonstrated to be a potentially attractive ther-
apeutic target inmetastatic brain cancer65, fatty acid elongasemight be
more selective in glioblastoma.

Methods
In vivo 13C labeling experiments
Animal experiments were approved by the Institutional Animal Care
and Use Committee at Washington University (assurance number
A338101, protocol 19-0930 and 22-0304) and were performed in
accordance with the recommendations in the Guide for the Care and
Use of Laboratory Animals of the NIH69. Female mice (C57BL/6J,
8 weeks old) were obtained from Jackson Laboratory. Sex was not
considered in this study as our primary focus was comparing different
tissue regions within the same brain. Mice were housed with an
ambient temperature of 22 °C, a relative humidity of 55%, and a 12-h
light/dark cycle. The murine glioma cell line GL261 expressing a luci-
ferase reporter and RFP70 was transduced with IDH1 R132H (pLV-
R132H-YFP). The cells weregrown in high-glucoseDMEMwith 10% fetal
bovine serum and 1% penicillin/streptomycin. Cells were harvested by
using trypsin, centrifuged, and resuspended in PBS (66,666 cells µL−1).
Micewere anesthetized and 200,000 cells (3 µL) were injected into the
frontal lobe of the left hemisphere of mouse brains by using a ste-
reotaxic apparatus (2mm lateral to the bregma and 3mm deep at a
speed of 0.6 µLmin−1)71. Mice were weighed daily, and tumor burden
was assessed by bioluminescence imaging (see below) as well as clin-
ical symptoms such as neurological deficits and weight loss. The
humane endpoint of the experiment was defined by loss of 20% body
weight and neurological deficits. These limits were not exceeded, and
all of the mice consumed the diet provided to them.

To monitor tumor growth, mice were anesthetized with iso-
flurane, injected intraperitoneally with luciferin (150mgkg−1, Gold

Bio), and subjected to bioluminescent imaging by using an IVIS Lumina
Series III system (Caliper LifeSciences, PerkinElmer). After 8 days,
tumors reached the desired size without impacting the mice’s beha-
vior. Mice were then fed a liquid diet containing unlabeled glucose or
U-13C-labeled glucose (Cambridge Isotope Laboratories) ad libitum for
48 h33. The diet was prepared in 50mL tubes to allow for proper vor-
texing. For two mice per day, 3.06 g base mix (Teklad Custom Diet,
TD.150344, Envigo) was thoroughly mixed with 4.95 g unlabeled or
5.12 g U-13C-labeled glucose. Next 22mLwater was added, and the tube
was thoroughly vortexed. After 20minutes, the tubes were vortexed
again before transferring the diet to a liquid diet feeding tube (Bio-
Serv). We would like to note that, even after optimization of the water
content, the consistencymade it challenging to fill the tube to a higher
level, thus one tube was used per two mice.

After 48 h, mice were anesthetized with isoflurane and blood was
collected by cardiac puncture. After clotting at room temperature for
30–60min, serum was obtained by centrifugation (1000× g, 10min,
room temperature). Brains were harvested and immediately fixed in
carboxymethylcellulose on dry-ice followed by storage at −80 °C. Five
tumor-bearing mice were prepared with unlabeled diet and four with
labeled diet. The data shown in the main and supplementary figures
provide a representative example of an unlabeled mouse and four
labeled mice. The other unlabeled mice were used for LC/MS-based
untargeted metabolomics analysis.

Preparation of brain samples and fluorescence microscopy
Brains were embedded in 5% wt. carboxymethyl cellulose (Millipore
Sigma) in water and stored at −80 °C. For DESI, 20 µm thick sections
were collected at −20 °C by using a CM1860 cryostat (Leica Biosys-
tems). Superfrost Plus slides (ThermoFisher Scientific)were used after
cleaning with ethanol. For MALDI, 10 µm thick sections were collected
on SiO2 passivated, indium tin oxide coated polished float glass slides
(Delta Technologies Limited, Loveland, CO, USA). Sections were dried
under vacuum, stored at −80 °C until use, and thawed under vacuum
immediately prior to analysis. Serial 50 µm thick sections were
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Fig. 10 | Stearate isotopologue imaging with MALDI. a MALDI imaging shows
stearate pool size in the unlabeled tumor brain. bDESI imaging of the labeled brain
indicates stearate pool size, with two regions of interest (ROI) selected for com-
parison of stearate labeling patterns. The tumor (ipsilateral) region shows higher
labeling than the non-tumor (contralateral) region. c Flux image after applying SISA
to a labeled tumor brain shows that the distribution of stearate turnover,

(g + e)ST(48 h), is higher in the tumor region. d Comparison of (g + e)ST(48 h) in the
tumor site versus non-tumor tissue in four biological replicates. Data shown as
mean ± SD. p value from paired t test (two-tailed). Stearate flux images for all four
biological replicates with corresponding microscopy images are shown in Sup-
plementary Fig. 11. The DESI counterpart from two additional brains is shown in
Fig. 9. Source data are provided as a Source Data file.
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collected for extraction and LC/MS analysis after separating tumor-
containing and non-tumor hemispheres (as described below).

Selected 10 µm thick tissue sections were mounted on Superfrost
Plus slides (Thermo Fisher Scientific) in Fluoroshield mounting med-
ium with DAPI (aqueous, Abcam, USA) and used for fluorescence
microscopy to verify tumor location. A Leica DMi8 Thunder Imager
was used to obtain images. For RFP, excitation was set to 540–580, DC
was set to 585, emissionwas set to 592–668, and exposure timewas set
to 1.3 s. For DAPI, excitation was set to 375–435, DC was set to 455,
emission was set to 450–490, and exposure time 59ms.

Standards and chemicals
LC/MS-grade acetonitrile, methanol, water, and metabolite standards
were purchased from Millipore Sigma or Thermo Fisher Scientific.
Ammonium bicarbonate, ammonium hydroxide, formic acid, and
methylenediphosphonic (medronic) acid were purchased from Milli-
pore Sigma and used as eluent additives for LC/MS.

Desorption electrospray ionization mass spectrometry imaging
Samples were analyzed by using a Synapt XS with a DESI source
(Waters Corporation). Images were collected in negative polarity by
using “High Resolution Mode” (FWHM resolution of 43,000 for
m/z = 554) with a capillary voltage of 4.0 kV and source temperature of
120 °C for mass range 70-560m/z. Images were acquired by using a
50 µm×50 µm pixel size and a 10 µms−1 raster rate. The incident spray
angle was 75°, and the collection angle to the mass spectrometer inlet
was −7°. The DESI solvent was 98:2 methanol:water with 0.01% formic
acid and 200pg µL−1 leucine-enkephalin lockmass compound (Waters
Corporation) infused at 3 µLmin−1. Typically, the solvent for DESI sys-
tems is delivered via a syringe pump. However, we found that using an
LC system (Waters Acquity) with a 1:100 splitter assembly (Agilent
Technologies) allows for delivering a more constant flow and elim-
inates the need to refill the syringe between samples.

Traveling wave ion mobility spectrometry
DESI samples were analyzed by using the same source conditions as
imaging (except for extending the mass range to 50-1200m/z), and
each measurement integrated several manually selected regions on
each tissue section. For direct infusion of standards, samples were
analyzed by using the ESI source in negative polarity in “Resolution
Mode” with a capillary voltage of 2.2 kV and a source temperature of
140 °C over a mass range of 50–1200m/z on the Synapt XS. The
direct infusion solvent was 98:2 methanol:water with 0.01% formic
acid and 200pg µL−1 leucine-enkephalin lockmass compound at
10 µLmin−1. TWIMS settings using 25.0 V wave height and a wave
velocity linear ramp from 1000m s−1 to 300m s−1 over 100% of the
cycle were applied.

Matrix-assisted laser desorption ionization mass spectrometry
imaging
Before MALDI analysis, matrix coating (either 12 or 14 passes) was
applied to the desiccated tissue sections by using an HTX M5 sprayer
(HTX Technologies) with 10mgmL−1 N-(1-Naphthyl) ethylenediamine
dihydrochloride (NEDC; Sigma), dissolved in 70:30 methanol:water.
The spraying parameters were set as follows: 80 °C nozzle tempera-
ture, 0.1mLmin−1

flow rate, 1000mmmin−1 velocity, 2mm track spa-
cing, 10 psi pressure, 3 Lmin−1 gas flow rate, and 10 s drying time for
each pass.

MALDI samples were analyzed by using a timsTOF fleX with a
MALDI source (Bruker Daltonics). All MALDI images were collected in
negative polarity inMS1mode at 50μmpixel size. The laserwas set as a
single focused beam with a laser power of 85%, a laser frequency of
10 kHz, and 200 shots per pixel. Themass range was 50-400m/z. Mass
calibrations were performed by using 1mM sodium formate solution.
AMP, stearate, and palmitate were analyzed from sections with 12

layers of matrix coating, while NAA was analyzed in sections with 14
layers applied.

LC/MS sample preparation
Sections of 50 µm brain tissue were cut into tumor and non-tumor
hemispheres with a razor blade and collected into Eppendorf tubes
while being kept frozen in the cryostat. The samples were then
extractedwith 2:2:1 acetonitrile, methanol, water at a ratio of 80 µL per
mgwet weight. The weight was calculated based on area and thickness
of the sections. The solvent was added to the tissue and vigorously
vortexed. For serumanalysis, 5 µL serumwasmixedwith 45 µLof a 4:4:1
mixture of acetonitrile, methanol, water, and vortexed. Extraction
blanks were prepared with 5 µL water instead of serum. All samples
were kept at −20 °C overnight. After centrifugation at 14,000 × g for
10min at 4 °C, the supernatant was transferred to an LC/MS vial.

Liquid chromatography
Metabolites were separated via hydrophilic interaction liquid chro-
matography (HILIC) by using a SeQuant ZIC-pHILIC column
(100 × 2.1mm, 5 µm, polymer, Merck-Millipore) with a ZIC-pHILIC
guard column (20mm×2.1mm, 5 µm). The column compartment
temperature was 40 °C and the flow rate was set to 250 µLmin−1. The
mobile phases consisted of A: 95% water, 5% acetonitrile, 20mM
ammonium bicarbonate, 0.1% ammonium hydroxide solution (25%
ammonia in water), 5 µM medronic acid; and B: 95% acetonitrile, 5%
water. The following linear gradient was applied: 0 to 1min, 90% B;
12min, 35% B; 12.5 to 14.5min, 25% B; 15min, 90% B followed by a re-
equilibration phase of 4min at 400 µLmin−1 and 2min at 250 µLmin−1.
The samples were kept at 6 °C in the autosampler. The injection
volume was 5 µL.

High-resolution mass spectrometry
A Vanquish UHPLC system was coupled to an Orbitrap ID-X Tribrid
mass spectrometer (Thermo Fisher Scientific) via electrospray ioniza-
tion with the following source conditions: sheath gas flow 50 arbitrary
units (Arb), auxiliary gas flow 10 Arb, sweep gas flow 1 Arb, ion transfer
tube temperature 300 °C, and vaporizer temperature 200 °C. The RF
lens value was 60%. Data were acquired in negative and positive
polaritywith a sprayvoltageof 2.8 kVand3.5 kV, respectively.MS1data
were acquired from 67 to 900m/z at a resolution of 120,000 with an
automatic gain control (AGC) target of 2e5 and a maximum injection
time of 200ms in polarity switching mode. MS2 data for metabolite
identification were acquired at a resolution of 15,000 with an AGC
target of 2.5e4 and amaximum injection time of 70ms in negative and
positive mode separately. A 5 ppm mass error and 10 s dynamic
exclusion were applied.

LC/MS-based untargeted metabolomics data processing
LC/MS data from tumor and non-tumor hemispheres of unlabeled
mousebrainswereprocessedwithCompoundDiscoverer 3.3. Features
were grouped (isotopes and adducts) and background compounds
(ratio sample to blank ≥5) were removed. Peak areas were normalized
by constant median. Compounds were then filtered based on a CV of
<20% in at least one of the two sample groups, resulting in a total of
459 compounds, which were used to generate the PCA plot (Fig. 2a). A
p value threshold of 0.05 resulted in 166 compounds and was used to
generate the heatmap (Fig. 2b). Metabolite identifications used in
Fig. 2c, d were obtained by matching MS/MS spectra to mzCloud and
had a matching score > 70.

IMS data processing
To determine CCS values, extracted ion mobilograms corresponding
to targetmetaboliteswere extracted from the rawdata generated from
the DESI system. Peak smoothing and CCS calculations were per-
formed in Python, and the code forperforming this analysis is available
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on GitHub (https://github.com/e-stan/imaging). CCS values were
compared to those published in the Unified CCS Compendium72. Ions
whose extracted ionmobilograms showedmultiple or distorted peaks
were excluded from use as MSI images.

MSI data processing
DESI imaging data were first opened through MassLynx software
(Waters Corporation) to evaluate spectra quality and perform a lock-
mass correction. The raw data were then converted to imzML by using
HDI software (WatersCorporation).MALDI datawerefirst processed in
the SCiLS software (Bruker Corporation) and exported to imzML. The
converted data from unlabeled samples were then analyzed with
METASPACE34 to annotate the detected ions, and the converted data
were subjected to a mass recalibration with adaptive pixel mass reca-
libration using the high-confidence METASPACE annotations (lists of
all metabolites identified with an FDR < 10% are provided as Supple-
mentary Table 1–3). Adaptive pixel mass recalibration73 has been
integrated into the Python-based software developed in this study.
Although the rawMSI data contained thousandsof unique signals, only
a small number of annotations were returned byMETASPACE. This is a
consequence of overlapping m/z peaks that prevent natural abun-
dance isotope pattern matches to be made within the METASPACE
software.We then further filtered themetabolite annotations returned
by METASPACE to remove metabolites that do not show isotope
incorporation in the labeled samples. This process resulted in a list of
targetmetabolites for evaluation. To analyze the resulting recalibrated
data, a target list of m/z values of interest was calculated from the
molecular formulas of the target metabolites. The intensity of each of
these masses was then extracted from the data and formatted into a
n ×w × h tensorwheren is the number ofm/z values of interest,w is the
width of the image in pixels, and h is the height of the image in pixels.
Then, the images were segmented into non-tissue background and
tissue by performing PCA-baseddimensionality reduction, followedby
k-means clustering (k = 2). Images were subsequently de-noised with
the application of a Gaussian blur 3 × 3 pixel filter. Tissue pixels were
natural isotope abundance corrected and further processed into iso-
topologue fractional images or flux images with SISA. The code and
scripts used to process the rawdata into the images and graphs shown
in this study are available on GitHub.

SISA
To calculate the fractional flux of palmitate synthesis from a labeled
tracer (glucose), a non-linear model derived from classical ISA31 was
employed. Classical ISA (Eq. 3) models the labeling pattern of a pro-
duct metabolite (P) containing n precursor subunits as a polynomial
function of tracer precursor labeling (T), natural abundance precursor
labeling (N), tracer dilution (D), and product synthesis flux (gðtÞ).

X
Pi = gðtÞ 1� Dð Þ N0 +N1 +N2

� �
+D T0 +T 1 +T2

� �� �n

+ 1� gðtÞð Þ N0 +N1 +N2

� �n ð3Þ

The SISA approach presented in this study differs from classical
ISA in that classical ISA assumes that the precursor labeling is known.
This is reasonable when the tracer and precursor are the same species.
However, as glucose was used as the tracer, acetyl-CoA (the precursor)
labeling is unknown and cannot be measured on the MSI platforms.
Thus, the presented ISA method jointly infers the precursor labeling
and the fractional flux. This removes the D and T terms and replaces it
with a precursor labeling term (X) thatmust be inferred, alongwith the
fractional turnover of palmitate, g(t) (Eq. 4).

X
Pi = g tð ÞðX0 +X 1 +X2Þn + 1� g tð Þ� �

N0 +N1 +N2

� �n ð4Þ

In SISA, four unknown variables (X0,X 1,X2, and g tð Þ) must be
inferred.While this ismore than the twoparameters that are inferred in

classical ISA, the system is still overdetermined in the caseof palmitate.
Palmitate is made of 16 carbons (8 acetyl CoA subunits), thus when
Eq. 2 is expanded and terms are grouped based on mass, there is a
system of seventeen independent equations that is sufficient to infer
g tð Þ and the labeling of the precursor pool accurately. The model
parameters are inferred by minimizing the sum of squared errors
between observed and fit labeling (Pi) with unconstrained numerical
optimization within SciPy74.

To calculate the fractional flux of stearate synthesis via elongation
ofpalmitate,we adaptedanexisting ISAapproach49 that separates newly
synthesized palmitate into elongation of unlabeled palmitate, eST ðtÞ,
and elongation of newly synthesized, labeled palmitate, gST ðtÞ, Eq. 5.

X
Pi = gST tð Þ X0 +X 1 +X2

� �9 + eST tð ÞðX0 +X 1 +X2Þ N0 +N1 +N2

� �8

+ 1� gST tð Þ � eST ðtÞ
� �

N0 +N1 +N2

� �9

ð5Þ

To solve this system, we again rely on numerical optimization
(constrained) within SciPy74 to find the model parameters yielding the
smallest sumof squared errors between observed and fit labeling. This
time, however, we infer gST ðtÞ, eST ðtÞ, and the precursor (X 1,X2,X3)
labeling.

Metabolite identification
Authentic metabolite standards were used to identify metabolites via
exact mass, retention time, MS/MS spectral matches, and CCS.

Error propagation analysis
To assess the impact of measurement error on the SISA results, we
performed an error propagation analysis by first calculating the mea-
surement error of palmitate and stearate in an unlabeledDESI brainMSI
dataset. As palmitate and stearate will not have isotopic label incor-
poration, theobserved labelingpatterns canbecompared to thenatural
abundance pattern and the mean error across all isotopologues was
used to quantitate measurement error. Next, we performed a synthetic
analysis where a gradient of random, Gaussian noise was added to
palmitate and stearate labeling patterns generated from the SISA
models of palmitate and stearate with randomly sampled g tð Þ, e tð Þ (for
stearate only), D, and T values. The resulting, noisy labeling patterns
were then analyzed with SISA to calculate g tð Þ and e tð Þ values that were
compared to the true values used to generate the labeling patterns. For
palmitate, classical ISA was also used to infer g tð Þ. The error between
calculated versus true flux parameters were then plotted against the
simulatedmeasurement error and a linear regression was computed to
capture the effect of noise on the flux estimates. The fit regression was
then used to project the measurement error computed in the DESI MSI
dataset into expected error range for the calculated g tð Þ and e tð Þ values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MALDI and DESI MSI data were uploaded to METASPACE and are
available at https://metaspace2020.eu/project/MSH_MSI_SISA_2023.
LC/MS data were uploaded to the Metabolomics Workbench75 with
project identifier PR001630 [https://doi.org/10.21228/M80T52]. The
publicly available transcriptomics dataset is available at the Gene
Expression Omnibus under accession number GSE147352. Source data
are provided with this paper.

Code availability
Source code for the analyses presented in this study can be found on
GitHub (https://github.com/e-stan/imaging), which is available under
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the Zenodo identifier https://doi.org/10.5281/zenodo.777844376. The
GitHub site also contains links to web-based Google Colaboratory
notebooks that can process raw MSI data from labeled samples with-
out the need to install software locally.
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