3 research outputs found

    Evolution of Traumatic Parenchymal Intracranial Hematomas (ICHs): Comparison of Hematoma and Edema Components

    Get PDF
    This study seeks to quantitatively assess evolution of traumatic ICHs over the first 24 h and investigate its relationship with functional outcome. Early expansion of traumatic intracranial hematoma (ICH) is common, but previous studies have focused on the high density (blood) component. Hemostatic therapies may increase the risk of peri-hematoma infarction and associated increased cytotoxic edema. Assessing the magnitude and evolution of ICH and edema represented by high and low density components on computerized tomography (CT) may be informative for designing therapies targeted at traumatic ICH. CT scans from participants in the COBRIT (Citicoline Brain Injury Trial) study were analyzed using MIPAV software. CT scans from patients with non-surgical intraparenchymal ICHs at presentation and approximately 24 h later (±12 h) were selected. Regions of high density and low density were quantitatively measured. The relationship between volumes of high and low density were compared to several outcome measures, including Glasgow Outcome Score—Extended (GOSE) and Disability Rating Score (DRS). Paired scans from 84 patients were analyzed. The median time between the first and second scan was 22.79 h (25%ile 20.11 h; 75%ile 27.49 h). Over this time frame, hematoma and edema volumes increased >50% in 34 (40%) and 46 (55%) respectively. The correlation between the two components was low (r = 0.39, p = 0.002). There was a weak correlation between change in edema volume and GOSE at 6 months (r = 0.268, p = 0.037), change in edema volume and DRS at 3 and 6 months (r = −0.248, p = 0.037 and r = 0.358, p = 0.005, respectively), change in edema volume and COWA at 6 months (r = 0.272, p = 0.049), and between final edema volume and COWA at 6 months (r = 0.302, p = 0.028). To conclude, both high density and low density components of traumatic ICHs expand significantly in the first 2 days after TBI. In our study, there does not appear to be a relationship between hematoma volume or hematoma expansion and functional outcome, while there is a weak relationship between edema expansion and functional outcome

    An Unusual Case of Hemophagocytic Lymphohistiocytosis Diagnosed by Spinal Nerve Root Biopsy

    No full text
    Hemophagocytic lymphohistiocytosis (HLH) is a rare disease process characterized by aberrant immune system activation and an exaggerated inflammatory response. Establishing the diagnosis may be challenging and is achieved by satisfying a number of clinical criteria, in addition to demonstrating tissue hemophagocytosis. This syndrome is rapidly fatal if prompt diagnosis and treatment are not achieved. The authors present the case of a 17-year-old male patient with CNS HLH involving both the brain and spinal cord, highlighting the variable CNS manifestations in pediatric patients with HLH and the challenges that accompany establishing diagnosis

    Reliability of the NINDS common data elements cranial tomography (CT) rating variables for traumatic brain injury (TBI)

    No full text
    Background: Non-contrast head computer tomography (CT) is widely used to evaluate eligibility of patients after acute traumatic brain injury (TBI) for clinical trials. The NINDS Common Data Elements (CDEs) TBI were developed to standardize collection of CT variables. The objectives of this study were to train research assistants (RAs) to rate CDEs and then to evaluate their performance. The aim was to assess inter-rater reliability (IRR) of CDEs between trained RAs and a neurologist and to evaluate applicability of CDEs in acute and sub-acute TBI to test the feasibility of using CDE CT ratings in future trials and ultimately in clinical practice. The second aim was to confirm that the ratings of CDEs reflect pathophysiological events after TBI.Methods and results: First, a manual was developed for application of the CDEs, which was used to rate brain CTs (n = 100). An excellent agreement was found in combined kappas between RAs on admission and on 24-hour follow-up CTs (Iota = 0.803 and 0.787, respectively). Good IRR (kappa > 0.61) was shown for six CDEs on admissions and for seven CDEs on follow-up CTs. Low IRR (kappa <0.4) was determined for five CDEs on admission and for four CDEs on follow-up CT. Combined IRR of each assistant with the neurologist were good on admission (Iota = 0.613 and 0.787) and excellent on follow-up CT (Iota = 0.906 and 0.977). Second, Principal Component Analysis (PCA) was applied to cluster the rated CDEs (n = 255) and five major components were found that explain 53% of the variance.Conclusions: CT CDEs are useful in clinical studies of TBI. Trained RAs can reliably collect variables. PCA identifies CDE clusters with clinical and biologic plausibility.Abbreviations: RA, research assistant; CT, Cranial Tomography; TBI, Traumatic Brain Injury; CDE, Common Data Elements; IRR, inter-rater reliability; PCA, Principal Component Analysis; GCS, Glasgow Coma Scale; R, rater; CI, confidence interval; CCC, Concordance correlation coefficient; IVH, Intraventricular haemorrhage; DCA, Discriminant Component analysis; SAH, Subarachnoid Haemorrhag
    corecore