4 research outputs found

    “What comes to mind when you think of science? The perfumery!”: Documenting science‐related cultural learning pathways across contexts and timescales

    Full text link
    In this paper, we explore the details of one youth's science‐related learning in‐ and out‐of‐school at the time of her participation in an ethnography of youth science and technology learning across contexts and over time. We use the Cultural Learning Pathways Framework to analyze the youth's interests, and the related sociocultural, historical, material, and affect‐laden practices in which she and her family participated. The following question guided our analysis: How do everyday moments—experienced across settings, pursuits, social groups, and time—result in scientific learning, expertise development, and identification? We found that this youth's interest in various aspects of the sciences was years in the making, embedded in situated events that were part of a space–time continuum bound by passion for the practices involved, influenced by specific cultural practices, and explored with the help of close family collaborators. We also found that school science activity in which the youth in question participated both supported and could have potentially constrained her science‐related cultural learning pathways. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 51: 260–285, 2014Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106138/1/tea21134.pd

    Defining the risk of SARS-CoV-2 variants on immune protection.

    Get PDF
    The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures
    corecore