332 research outputs found

    Pulmonary fissure integrity and collateral ventilation in COPD patients

    Get PDF
    Purpose: To investigate whether the integrity (completeness) of pulmonary fissures affects pulmonary function in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods: A dataset consisting of 573 CT exams acquired on different subjects was collected from a COPD study. According to the global initiative for chronic obstructive lung disease (GOLD) criteria, these subjects (examinations) were classified into five different subgroups, namely non-COPD (222 subjects), GOLD-I (83 subjects), GOLD-II (141 subjects), GOLD-III (63 subjects), and GOLD-IV (64 subjects), in terms of disease severity. An available computer tool was used to aid in an objective and efficient quantification of fissure integrity. The correlations between fissure integrity, and pulmonary functions (e.g., FEV1, and FEV1/FVC) and COPD severity were assessed using Pearson and Spearman's correlation coefficients, respectively. Results: For the five sub-groups ranging from non-COPD to GOLD-IV, the average integrities of the right oblique fissure (ROF) were 81.8%, 82.4%, 81.8%, 82.8%, and 80.2%, respectively; the average integrities of the right horizontal fissure (RHF) were 62.6%, 61.8%, 62.1%, 62.2%, and 62.3%, respectively; the average integrities of the left oblique fissure (LOF) were 82.0%, 83.2%, 81.7%, 82.0%, and 78.4%, respectively; and the average integrities of all fissures in the entire lung were 78.0%, 78.6%, 78.1%, 78.5%, and 76.4%, respectively. Their Pearson correlation coefficients with FEV1 and FE1/FVC range from 0.027 to 0.248 with p values larger than 0.05. Their Spearman correlation coefficients with COPD severity except GOLD-IV range from -0.013 to -0.073 with p values larger than 0.08. Conclusion: There is no significant difference in fissure integrity for patients with different levels of disease severity, suggesting that the development of COPD does not change the completeness of pulmonary fissures and incomplete fissures alone may not contribute to the collateral ventilation. © 2014 Pu et al

    Polarized Structure Functions in the Valence Quark and Resonance Regions and the GDH Sum

    Full text link
    I present in this paper the neutron spin physics program in Hall A at Jefferson Laboratory using a polarized helium-3 target. The program encompasses several completed experiments, in which, valuable spin observables (spin dependent structure functions) were measured in order to learn about how the nucleon spin arises from the behavior of the constituents. These experiments also offer a ground for testing our understanding of the strong regime of quantum chromodynamics (QCD) the theory of strong interactions through the determination of moments of these structure functions.Comment: 9 pages, 2 Postscript figures, XVth International Conference on Particles and Nuclei (PANIC02), Osaka, Japan, 30 September-4 October 200

    Nuclear Antishadowing in Neutrino Deep Inelastic Scattering

    Full text link
    The shadowing and antishadowing of nuclear structure functions in the Gribov-Glauber picture is due respectively to the destructive and constructive interference of amplitudes arising from the multiple-scattering of quarks in the nucleus. The effective quark-nucleon scattering amplitude includes Pomeron and Odderon contributions from multi-gluon exchange as well as Reggeon quark-exchange contributions. We show that the coherence of these multiscattering nuclear processes leads to shadowing and antishadowing of the electromagnetic nuclear structure functions in agreement with measurements. This picture leads to substantially different antishadowing for charged and neutral current reactions, thus affecting the extraction of the weak-mixing angle ΞW\theta_W. We find that part of the anomalous NuTeV result for ΞW\theta_W could be due to the nonuniversality of nuclear antishadowing for charged and neutral currents. Detailed measurements of the nuclear dependence of individual quark structure functions are thus needed to establish the distinctive phenomenology of shadowing and antishadowing and to make the NuTeV results definitive.Comment: 38 pages, 15 figure

    A Synthesis of the Dibble et al. Controlled Experiments into the Mechanics of Lithic Production

    Get PDF
    Archaeologists have explored a wide range of topics regarding archaeological stone tools and their connection to past human lifeways through experimentation. Controlled experimentation systematically quantifies the empirical relationships among different flaking variables under a controlled and reproducible setting. This approach offers a platform to generate and test hypotheses about the technological decisions of past knappers from the perspective of basic flaking mechanics. Over the past decade, Harold Dibble and colleagues conducted a set of controlled flaking experiments to better understand flake variability using mechanical flaking apparatuses and standardized cores. Results of their studies underscore the dominant impact of exterior platform angle and platform depth on flake size and shape and have led to the synthesis of a flake formation model, namely the EPA-PD model. However, the results also illustrate the complexity of the flake formation process through the influence of other parameters such as core surface morphology and force application. Here we review the work of Dibble and colleagues on controlled flaking experiments by summarizing their findings to date. Our goal is to synthesize what was learned about flake variability from these controlled experiments to better understand the flake formation process. With this paper, we are including all of the data produced by these prior experiments and an explanation of the data in the Supplementary Information

    Parton distribution functions and quark orbital motion

    Full text link
    Covariant version of the quark-parton model is studied. Dependence of the structure functions and parton distributions on the 3D quark intrinsic motion is discussed. The important role of the quark orbital momentum, which is a particular case of intrinsic motion, appears as a direct consequence of the covariant description. Effect of orbital motion is substantial especially for polarized structure functions. At the same time, the procedure for obtaining the quark momentum distributions of polarized quarks from the combination of polarized and unpolarized structure functions is suggested.Comment: 17 pages, 2 figures, 1 table. Paper is accepted for publication in Eur.Phys.J.

    The spin dependence of high energy proton scattering

    Get PDF
    Motivated by the need for an absolute polarimeter to determine the beam polarization for the forthcoming RHIC spin program, we study the spin dependence of the proton-proton elastic scattering amplitudes at high energy and small momentum transfer.We examine experimental evidence for the existence of an asymptotic part of the helicity-flip amplitude phi_5 which is not negligible relative to the largely imaginary average non-flip amplitude phi_+. We discuss theoretical estimates of r_5, essentially the ratio of phi_5 to phi_+, based upon extrapolation of low and medium energy Regge phenomenological results to high energies, models based on a hybrid of perturbative QCD and non-relativistic quark models, and models based on eikonalization techniques. We also apply the model-independent methods of analyticity and unitarity.The preponderence of evidence at available energy indicates that r_5 is small, probably less than 10%. The best available experimental limit comes from Fermilab E704:those data indicate that |r_5|<15%. These bounds are important because rigorous methods allow much larger values. In contradiction to a widely-held prejudice that r_5 decreases with energy, general principles allow it to grow as fast as ln(s) asymptotically, and some models show an even faster growth in the RHIC range. One needs a more precise measurement of r_5 or to bound it to be smaller than 5% in order to use the classical Coulomb-nuclear interference technique for RHIC polarimetry. As part of this study, we demonstrate the surprising result that proton-proton elastic scattering is self-analysing, in the sense that all the helicity amplitudes can, in principle, be determined experimentally at small momentum transfer without a knowledge of the magnitude of the beam and target polarization

    The Proton Spin and the Wigner Rotation

    Full text link
    It is shown that in both the gluonic and strange sea explanations of the Ellis-Jaffe sum rule violation discovered by the European Muon Collaboration (EMC), the spin of the proton, when viewed in in its rest reference frame, could by fully provided by quarks and antiquarks within a simple quark model picture, taken into account the relativistic effect from the Wigner rotation.Comment: 13 latex page

    Three-dimensional parton distribution functions g1Tg_{1T} and h1L⊄h_{1L}^\perp in the polarized proton-antiproton Drell-Yan process

    Full text link
    We present predictions of the unweighted and weighted double spin asymmetries related to the transversal helicity distribution g1Tg_{1T} and the longitudinal transversity distribution h1L⊄h_{1L}^\perp, two of eight leading-twist transverse momentum dependent parton distributions (TMDs) or three-dimensional parton distribution functions (3dPDFs), in the polarized proton-antiproton Drell-Yan process at typical kinematics on the Facility for Antiproton and Ion Research (FAIR). We conclude that FAIR is ideal to access the new 3dPDFs towards a detailed picture of the nucleon structure.Comment: 6 latex pages, 5 figures, version for publication in EPJ

    Next-to-leading order QCD corrections to one hadron-production in polarized pp collisions at RHIC

    Get PDF
    We calculate the next-to-leading order QCD corrections to the spin-dependent cross section for single-inclusive hadron production in hadronic collisions. This process will be soon studied experimentally at RHIC, providing a tool to unveil the polarized gluon distribution Δg\Delta g. We observe a considerably improvement in the perturbative stability for both unpolarized and polarized cross sections. The NLO corrections are found to be non-trivial, resulting in a reduction of the asymmetry.Comment: 8 pages, RevTeX4, 9 figures include

    Aspects of four-jet production in polarized proton-proton collisions

    Full text link
    We examine the intrinsic spin-dependence of the dominant gg→gggggg \rightarrow gggg subprocess contribution to four-jet production in polarized proton-proton collisions using helicity amplitude techniques. We find that the partonic level, longitudinal spin-spin asymmetry, a^LL\hat{a}_{LL}, is intrinsically large in the kinematic regions probed in experiments detecting four isolated jets. Such events may provide another qualitative or semi-quantitative test of the spin-structure of QCD in planned polarized pppp collisions at RHIC.Comment: 9 pages, LaTeX, 2 uuencoded postscript files attache
    • 

    corecore