1,065 research outputs found

    Parton distribution functions of proton in a light-front quark-diquark model

    Full text link
    We present the parton distribution functions (PDFs) for un- polarised, longitudinally polarized and transversely polarized quarks in a proton using the light-front quark diquark model. We also present the scale evolution of PDFs and calculate axial charge and tecsor charge for uu and dd quarks at a scale of experimental findings.Comment: XXII DAE-BRNS High Energy Physics Symposium, December 12-16, 2016, University of Delhi, India; 4 pages, 1 figur

    Spin Structure of the Nucleon - Status and Recent Results

    Full text link
    After the initial discovery of the so-called "spin crisis in the parton model" in the 1980's, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q^2 dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g_1 and g_2 of the nucleon and their moments.Comment: 69 pages, 46 figures. Report to be published in "Progress in Particle and Nuclear Physics". v2 with added references and minor edit

    On the controversy concerning the definition of quark and gluon angular momentum

    Full text link
    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a detailed discussion has been added concerning the momentum carried by quarks and the Ji sum rule for the angular momentu

    Neural network identification of keystream generators

    Get PDF
    Applications such as stream ciphers and spread spectra require the generation of binary keystreams to implement, and the simulation of such keystreams to break. Most cryptanalytic attacks are of the known generator type, that is, they assume knowledge of the method used to generate the keystream. We show that a neural network can be used to identify the generator, and in some cases to simulate the keystream.http://archive.org/details/neuralnetworkide00leadApproved for public release; distribution is unlimited

    Correlation for permutations

    Get PDF
    In this note we investigate correlation inequalities for `up-sets' of permutations, in the spirit of the Harris--Kleitman inequality. We focus on two well-studied partial orders on SnS_n, giving rise to differing notions of up-sets. Our first result shows that, under the strong Bruhat order on SnS_n, up-sets are positively correlated (in the Harris--Kleitman sense). Thus, for example, for a (uniformly) random permutation π\pi, the event that no point is displaced by more than a fixed distance dd and the event that π\pi is the product of at most kk adjacent transpositions are positively correlated. In contrast, under the weak Bruhat order we show that this completely fails: surprisingly, there are two up-sets each of measure 1/21/2 whose intersection has arbitrarily small measure. We also prove analogous correlation results for a class of non-uniform measures, which includes the Mallows measures. Some applications and open problems are discussed

    On the Role of Higher Twist in Polarized Deep Inelastic Scattering

    Get PDF
    The higher twist corrections hN(x)/Q2h^N(x)/Q^2 to the spin dependent proton and neutron structure functions g1N(x,Q2)g_1^N(x, Q^2) are extracted in a model independent way from experimental data on g1Ng_1^N and found to be non-negligible. It is shown that the NLO QCD polarized parton densities determined from the data on g1, including higher twist effects, are in good agreement with those found earlier from our analysis of the data on g1/F1 and A1 where higher twist effects are negligible. On the contrary, the LO QCD polarized parton densities obtained from the data on g1, including higher twist, differ significantly from our previous results.Comment: 18 pages, latex, 6 figures, final version which will be published in Phys. Rev. D, fig. 5 is changed, misprints in Table 2 are remove

    Can the polarization of the strange quarks in the proton be positive ?

    Full text link
    Recently, the HERMES Collaboration at DESY, using a leading order QCD analysis of their data on semi-inclusive deep inelastic production of charged hadrons, reported a marginally positive polarization for the strange quarks in the proton. We argue that a non-negative polarization is almost impossible.Comment: 6 pages, latex, minor changes in the discussion after Eq. (9

    The role of Cahn and Sivers effects in Deep Inelastic Scattering

    Get PDF
    The role of intrinsic \bfk_\perp in inclusive and semi-inclusive Deep Inelastic Scattering processes (phX\ell p \to \ell h X) is studied with exact kinematics within QCD parton model at leading order; the dependence of the unpolarized cross section on the azimuthal angle between the leptonic and the hadron production planes (Cahn effect) is compared with data and used to estimate the average values of kk_\perp both in quark distribution and fragmentation functions. The resulting picture is applied to the description of the weighted single spin asymmetry AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} recently measured by the HERMES collaboration at DESY; this allows to extract some simple models for the quark Sivers functions. These are compared with the Sivers functions which succeed in describing the data on transverse single spin asymmetries in \pup p \to \pi X processes; the two sets of functions are not inconsistent. The extracted Sivers functions give predictions for the COMPASS measurement of AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} in agreement with recent preliminary data, while their contribution to HERMES AULsinϕπA_{UL}^{\sin\phi_\pi} is computed and found to be small. Predictions for AUTsin(ϕKϕS)A_{UT}^{\sin(\phi_K - \phi_S)} for kaon production at HERMES are also given.Comment: 21 pages, 12 figures, revtex, version published in PRD, one figure, comments and references adde

    NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production

    Full text link
    Using a subtraction method, we derive the formulae suitable for use in Monte-Carlo event generators to give the angular distribution for the gluon-quark induced NLO corrections in Drell-Yan lepton pair production. We also give the corresponding helicity density matrix for W and Z boson production.Comment: 14 pages, 2 figure

    Perturbative power Q^2-corrections to the structure function g(1)

    Get PDF
    We prove that regulating infrared divergencies generates power (~1/(Q^2)^k) corrections to the spin structure function g_1 at small x and large Q^2. At the same time it leads to the corrections ~(Q^2)^k at small Q^2. We present the explicit series of such terms as well as the formulae for their resummation. These contributions are not included in the standard analysis of the experimental data. We argue that accounting for such terms can sizably change the impact of the other power corrections conventionally attributed to the higher twists.Comment: Theoretical grounds for our approach are considered in much more detailed way than in the previous version; 10 pages, 2 figure
    corecore