690 research outputs found

    Filter-feeding, near-field flows, and the morphologies of colonial choanoflagellates

    Get PDF
    Efficient uptake of prey and nutrients from the environment is an important component in the fitness of all microorganisms, and its dependence on size may reveal clues to the origins of evolutionary transitions to multicellularity. Because potential benefits in uptake rates must be viewed in the context of other costs and benefits of size, such as varying predation rates and the increased metabolic costs associated with larger and more complex body plans, the uptake rate itself is not necessarily that which is optimized by evolution. Uptake rates can be strongly dependent on local organism geometry and its swimming speed, providing selective pressure for particular arrangements. Here we examine these issues for choanoflagellates, filter-feeding microorganisms that are the closest relatives of the animals. We explore the different morphological variations of the choanoflagellate Salpingoeca rosetta\textit{Salpingoeca rosetta}, which can exist as a swimming cell, as a sessile thecate cell, and as colonies of cells in various shapes. In the absence of other requirements and in a homogeneously nutritious environment, we find that the optimal strategy to maximize filter-feeding by the collar of microvilli is to swim fast, which favors swimming unicells. In large external flows, the sessile thecate cell becomes advantageous. Effects of prey diffusion are discussed and also found to be to the advantage of the swimming unicell.This work was supported in part by the Engineering and Physical Sciences Research Council and St. Johns College (J.B.K.) and Wellcome Trust Senior Investigator Award 097855MA (R.E.G.)

    Semiclassical description of resonant tunneling

    Full text link
    We derive a semiclassical formula for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The calculations idealize an experimental situation where a strong magnetic field tilted with respect to an electric field is used. The resulting semiclassical expression is written as the sum over special periodic orbits which hit both walls of the quantum well and are perpendicular to the first wall.Comment: LaTeX, 8 page

    Unbroken supersymmetry in the Aharonov-Casher effect

    Full text link
    We consider the problem of the bound states of a spin 1/2 chargless particle in a given Aharonov-Casher configuration. To this end we recast the description of the system in a supersymmetric form. Then the basic physical requirements for unbroken supersymmetry are established. We comment on the possibility of neutron confinement in this system

    Exploring the role of professional associations in collective learning in London and New York's advertising and law professional service firm clusters.

    Get PDF
    The value of regional economies for collective learning has been reported by numerous scholars. However often work has been criticised for lacking analytical clarity and failing to explore the architectures of collective learning and the role of the knowledge produced in making firms in a cluster economy successful. This paper engages with these problematics and investigates how collective learning is facilitated in the advertising and law professional service firm clusters in London and New York. It explores the role of professional associations and investigates how they mediate a collective learning process in each city. It argues that professional associations seed urban communities of practice that emerge outside of the formal activities of professional associations. In these communities individual with shared interests in advertising and law learn from one-another and are therefore able to adapt and evolve one-another approaches to common industry challenges. The paper suggests this is another form of the variation Marshall highlighted in relation to cluster-based collective learning. The paper also shows how the collective learning process is affected by the presence, absence and strength of an institutional thickness. It is therefore argued that a richer understanding of institutional affects is needed in relation to CL

    Acting together: ensemble as a democratic process in art and life

    Get PDF
    Traditionally drama in schools has been seen either as a learning medium with a wide range of curricular uses or as a subject in its own right. This paper argues that the importance of drama in schools is in the processes of social and artistic engagement and experiencing of drama rather than in its outcomes. The paper contrasts the pro-social emphasis in the ensemble model of drama with the pro-technical and limited range of learning in subject-based approaches which foreground technical knowledge of periods, plays, styles and genres. The ensemble-based approach is positioned in the context of professional theatre understandings of ensemble artistry and in the context of revolutionary shifts from the pro-technical to the pro-social in educational and cultural policy making in England. Using ideas drawn from McGrath and Castoriadis, the paper claims that the ensemble approach provides young people with a model of democratic living

    Symmetry Dependence of Localization in Quasi- 1- dimensional Disordered Wires

    Full text link
    The crossover in energy level statistics of a quasi-1-dimensional disordered wire as a function of its length L is used, in order to derive its averaged localization length, without magnetic field, in a magnetic field and for moderate spin orbit scattering strength. An analytical function of the magnetic field for the local level spacing is obtained, and found to be in excellent agreement with the magnetic field dependent activation energy, recently measured in low-mobility quasi-one-dimensional wires\cite{khavin}. This formula can be used to extract directly and accurately the localization length from magnetoresistance experiments. In general, the local level spacing is shown to be proportional to the excitation gap of a virtual particle, moving on a compact symmetric space.Comment: 4 pages, 2 Eqs. added, Eperimental Data included in Fig.

    Interacting particles at a metal-insulator transition

    Full text link
    We study the influence of many-particle interaction in a system which, in the single particle case, exhibits a metal-insulator transition induced by a finite amount of onsite pontential fluctuations. Thereby, we consider the problem of interacting particles in the one-dimensional quasiperiodic Aubry-Andre chain. We employ the density-matrix renormalization scheme to investigate the finite particle density situation. In the case of incommensurate densities, the expected transition from the single-particle analysis is reproduced. Generally speaking, interaction does not alter the incommensurate transition. For commensurate densities, we map out the entire phase diagram and find that the transition into a metallic state occurs for attractive interactions and infinite small fluctuations -- in contrast to the case of incommensurate densities. Our results for commensurate densities also show agreement with a recent analytic renormalization group approach.Comment: 8 pages, 8 figures The original paper was splitted and rewritten. This is the published version of the DMRG part of the original pape
    • …
    corecore