9 research outputs found

    Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis

    Get PDF
    Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells

    Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features

    Get PDF
    The pro-tumourigenic role of epithelial TGFβ signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFβ signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFβ signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFβ signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFβ signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC’s with born to be bad traits

    What is your neurologic diagnosis?

    No full text
    Full Text Journal of the American Veterinary Medical Association September 1, 2015, Vol. 247, No. 5, Pages 479-482 doi: 10.2460/javma.247.5.479 What Is Your Neurologic Diagnosis? Julien Guevar, DVM; Rodrigo Gutierrez-Quintana, MVZ, MVM; Joshua D. G. Leach, MA, VetMB; Jacques Penderis, BVSc, MVM, PhD School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland. (Guevar, Gutierrez-Quintana, Leach, Penderis) Dr. Penderis’ present address is Vet-Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Rd, Stirling, FK7 7LE, Scotland. Address correspondence to Dr. Penderis ([email protected]). Sections: ABSTRACT A 4-year-old 24-kg (52.8-lb) neutered female Bearded Collie was evaluated because of progressive tetraparesis. Six weeks prior to hospital admission, the dog developed thoracolumbar hyperesthesia and an abnormal gait in the pelvic limbs that resolved with NSAID treatment (meloxicam, 0.05 mg/kg [0.02 mg/lb], PO, q 24 h). Sudden-onset nonambulatory tetraparesis had developed 24 hours prior to admission. The pelvic limbs were markedly more affected with only mild voluntary movements. When provided with pelvic limb support, the dog could ambulate with a short thoracic limb stride. Results of a complete physical examination were unremarkable, other than the neurologic examination findings. The dog had been admitted to the hospital at night, and by the following morning, the tetraparesis had progress

    Fumarate induces redox-dependent senescence by modifying glutathione metabolism

    Get PDF
    Mutations in the tricarboxylic acid (TCA) cycle enzyme ​fumarate hydratase (​FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of ​FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of ​fumarate caused by the inactivation of ​FH leads to oxidative stress that is mediated by the formation of ​succinicGSH, a covalent adduct between ​fumarate and ​glutathione. Chronic succination of ​GSH, caused by the loss of ​FH, or by exogenous ​fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of ​p21, a key mediator of senescence, in ​Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that ​fumarate-induced senescence needs to be bypassed for the initiation of renal cancers

    Loss of Cxcr2 in myeloid cells promotes tumour progression and T cell infiltration in invasive bladder cancer

    Get PDF
    BACKGROUND:CXCR2 is a chemokine receptor expressed in myeloid cells, including neutrophils and macrophages. Pharmacological inhibition of CXCR2 has been shown to sensitize tumours to immune checkpoint inhibitor immunotherapies in some cancer types. OBJECTIVE:To investigate the effects of CXCR2 loss in regulation of tumour-infiltrating myeloid cells and their relationship to lymphocytes during bladder tumorigenesis. METHODS:Urothelial pathogenesis and immune contexture was investigated in an OH-BBN model of invasive bladder cancer with Cxcr2 deleted in myeloid cells (LysMCre Cxcr2floxflox). CXCR2 gene alterations and expression in human muscle invasive bladder cancer were analysed in The Cancer Genome Atlas. RESULTS:Urothelial tumour pathogenesis was significantly increased upon Cxcr2 deletion compared to wildtype mice. This was associated with a suppression of myeloid cell infiltration in Cxcr2-deleted bladders shortly after the carcinogen induction. Interestingly, following a transient increase of macrophages at the outset of tumour formation, an increase in T cell infiltration was observed in Cxcr2-deleted tumours. The increased tumour burden in the Cxcr2-deleted bladder was largely independent of T cells and the status of immune suppression. The Cxcr2-deleted mouse model reflected the low CXCR2 mRNA range in human bladder cancer, which showed poor overall survival. CONCLUSIONS:In contrast to previous reports of increased CXCR2 signalling associated with disease progression and poor prognosis, CXCR2 was protective against bladder cancer during tumour initiation. This is likely due to a suppression of acute inflammation. The strategy for sensitizing checkpoint immunotherapy by CXCR2 inhibition in bladder cancer may benefit from an examination of immune suppressive status

    Ein rechnergestuetztes Verfahren fuer den Generalplanentwurf von Schiffen

    Get PDF
    Available from TIB Hannover: RA 489(517) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    MNK inhibition sensitizes KRAS-mutant colorectal cancer to mTORC1 inhibition by reducing eIF4E phosphorylation and c-MYC expression

    No full text
    KRAS-mutant colorectal cancers (CRC) are resistant to therapeutics, presenting a significant problem for ~40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant CRC. Using Kras-mutant mouse models and mouse- and patient-derived organoids we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of CRCs have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent co-targeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population who may benefit from its clinical application

    The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer

    No full text
    Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC

    CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma

    Get PDF
    CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derived suppressor cells also suppressed metastasis suggesting a key role for CXCR2 in establishing and maintaining the metastatic niche. Importantly, loss or inhibition of CXCR2 improved T cell entry, and combined inhibition of CXCR2 and PD1 in mice with established disease significantly extended survival. We show that CXCR2 signaling in the myeloid compartment can promote pancreatic tumorigenesis and is required for pancreatic cancer metastasis, making it an excellent therapeutic target
    corecore