4,889 research outputs found

    Dynamical control of electron spin coherence in a quantum dot

    Get PDF
    We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through exact numerical simulation, with emphasis on realistic pulse delays and long-time limit. Our results show that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial electron spin state, coherence can saturate at long times, signaling the creation of a stable ``spin-locked'' decoherence-free subspace. Analytical insight on saturation is obtained for a simple echo protocol, in good agreement with numerical results.Comment: 4 pages, 4 figures with 3 of them in colo

    Deep Reinforcement Learning for Surgical Gesture Segmentation and Classification

    Full text link
    Recognition of surgical gesture is crucial for surgical skill assessment and efficient surgery training. Prior works on this task are based on either variant graphical models such as HMMs and CRFs, or deep learning models such as Recurrent Neural Networks and Temporal Convolutional Networks. Most of the current approaches usually suffer from over-segmentation and therefore low segment-level edit scores. In contrast, we present an essentially different methodology by modeling the task as a sequential decision-making process. An intelligent agent is trained using reinforcement learning with hierarchical features from a deep model. Temporal consistency is integrated into our action design and reward mechanism to reduce over-segmentation errors. Experiments on JIGSAWS dataset demonstrate that the proposed method performs better than state-of-the-art methods in terms of the edit score and on par in frame-wise accuracy. Our code will be released later.Comment: 8 pages, 2 figures, accepted for MICCAI 201

    Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot

    Get PDF
    The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large inter-pulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control non-idealities is also assessed, including the effect of intra-bath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control parameters do not exceed 5%, decoupling protocols can still prolong the coherence time by up to two orders of magnitude.Comment: 16 pages, 10 figures, submitted to Phys. Rev.

    Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials

    Get PDF
    Lignocellulosic materials are the most abundant biomass on the planet, representing a great opportunity for energy valorisation. This work investigated the effect of methanol-organosolv pretreatment on the methane production from hazelnut skin (HS), spent coffee grounds (SCG), and almond shell (AS). The pretreatment on the three lignocellulosic materials was performed at 130, 160, and 200 °C for 60 min using a 50% (v/v) methanol solution, with and without the addition of sulfuric acid as a catalyst. The biomethane potential of raw and pretreated substrates was evaluated under wet-mesophilic conditions in batch reactors, achieving 17.3 (±32.3), 293.4 (±46.6), and 23.2 (±9.6) mL CH4/g VS for HS, SCG, and AS, respectively. The methanol-organosolv pretreatment was particularly effective on HS, increasing its biomethane potential up to 310.6 (±22.2) CH4/g VS. On the contrary, all pretreatment conditions were ineffective on SCG and AS in terms of cumulative methane production. Among the three substrates, only HS showed significant composition changes due to the pretreatment, with the lignin content decreasing from 39.66 to 34.73% and the amount of bioavailable sugars increasing. An energy assessment confirmed the pretreatment efficacy on HS, with a maximum net positive energy recovery of 1.35 kWh/kg VS

    Fed-batch anaerobic digestion of raw and pretreated hazelnut skin over long-term operation

    Get PDF
    This study provided important insights on the anaerobic digestion (AD) of hazelnut skin (HS) by operating a fed-batch AD reactor over 240 days and focusing on several factors impacting the process in the long term. An efficient reactor configuration was proposed to increase the substrate load while reducing the solid retention time during the fed-batch AD of HS. Raw HS produced maximally 19.29 mL CH4/g VSadd/d. Polyphenols accumulated in the reactor and the use of NaOH to adjust the pH likely inhibited AD. Maceration and methanol-organosolv pretreatments were, thus, used to remove polyphenols from HS (i.e. 82 and 97%, respectively) and improve HS biodegradation. Additionally, organosolv pretreatment removed 9% of the lignin. The organosolv-pretreated HS showed an increment in methane potential of 21%, while macerated HS produced less methane than the raw substrate, probably due to the loss of non-structural sugars during maceration

    Magneto-shear modes and a.c. dissipation in a two-dimensional Wigner crystal

    Full text link
    The a.c. response of an unpinned and finite 2D Wigner crystal to electric fields at an angular frequency ω\omega has been calculated in the dissipative limit, ωτâ‰Ș1\omega \tau \ll 1, where τ−1\tau ^{-1} is the scattering rate. For electrons screened by parallel electrodes, in zero magnetic field the long-wavelength excitations are a diffusive longitudinal transmission line mode and a diffusive shear mode. A magnetic field couples these modes together to form two new magneto-shear modes. The dimensionless coupling parameter ÎČ=2(ct/cl)âˆŁÏƒxy/σxx∣\beta =2(c_{t}/c_{l})|\sigma_{xy}/\sigma_{xx}| where ctc_{t} and clc_{l} are the speeds of transverse and longitudinal sound in the collisionless limit and σxy\sigma_{xy} and σxx\sigma_{xx} are the tensor components of the magnetoconductivity. For ÎČâ©Ÿ1\beta \geqslant 1, both the coupled modes contribute to the response of 2D electrons in a Corbino disk measurement of magnetoconductivity. For ÎČ≫1\beta \gg 1, the electron crystal rotates rigidly in a magnetic field. In general, both the amplitude and phase of the measured a.c. currents are changed by the shear modulus. In principle, both the magnetoconductivity and the shear modulus can be measured simultaneously.Comment: REVTeX, 7 pp., 4 eps figure

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte

    Qualitative study to understand the barriers to recruiting young people with cancer to BRIGHTLIGHT: a national cohort study in England

    Get PDF
    Objectives: BRIGHTLIGHT is a national evaluation of cancer services for teenagers and young adults in England. Following challenges with recruitment, our aim was to understand more fully healthcare professionals’ perspectives of the challenges of recruiting young people to a low-risk observational study, and to provide guidance for future recruitment processes. / Design: Qualitative. / Setting: National Health Service (NHS) hospitals in England. / Methods: Semistructured telephone interviews with a convenience sample of 23 healthcare professionals. Participants included principal investigators/other staff recruiting into the BRIGHTLIGHT study. Data were analysed using framework analysis. / Results: The emergent themes were linked to levels of research organisational management, described using the levels of social network analysis: micro-level (the individual; in this case the target population to be recruited—young people with cancer); meso-level (the organisation; refers to place of recruitment and people responsible for recruitment); and macro-level (the large-scale or global structure; refers to the wider research function of the NHS and associated policies). Study-related issues occurred across all three levels, which were influenced by the context of the study. At the meso-level, professionals’ perceptions of young people and communication between professionals generated age/cancer type silos, resulting in recruitment of either children or adults, but not both by the same team, and only in the cancer type the recruiting professional was aligned to. At the macro-level the main barrier was discordant configuration of a research service with a clinical service. / Conclusions: This study has identified significant barriers to recruitment mainly at the meso-level and macro-level, which are more challenging for research teams to influence. We suggest that interconnected whole-system changes are required to facilitate the success of interventions designed to improve recruitment. Interventions targeted at study design/management and the micro-level only may be less successful. We offer solutions to be considered by those involved at all levels of research for this population

    Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    Get PDF
    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g. FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e. determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies
    • 

    corecore