54 research outputs found

    Deciphering Psilocybin: Cytotoxicity, Anti-inflammatory Effects, and Mechanistic Insights

    Get PDF
    A decade of clinical research indicates psilocybin\u27s effectiveness in treating various neuropsychiatric disorders, such as depression and substance abuse. The correlation between increased pro-inflammatory cytokines and the severity of neuropsychiatric symptoms, along with the known anti-inflammatory potential of some psychedelics, suggests an immunomodulatory role for psilocybin. This study aims to understand psilocybin\u27s mechanism of action by investigating the cytotoxic and immunomodulatory effects of psilocybin and psilocin on both resting and LPS-activated RAW 264.7 murine macrophages

    The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars

    Get PDF
    NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today’s Martian surface at Jezero crater.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects no. ESP2014-54256-C4- 1-R (also -2-R, -3-R and -4-R); Ministry of Science, Innovation and Universities, projects no. ESP2016-79612-C3-1-R (also -2-R and -3-R); Ministry of Science and Innovation/State Agency of Research (10.13039/501100011033), projects no. ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33), RTI2018-099825-B-C31, PID2019-109467GB-I00 and PRE2020-092562; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Spanish State Research Agency (AEI) Project MDM-2017-0737 Unidad de Excelencia “María de Maeztu”—Centro de Astrobiología; Grupos Gobierno Vasco IT1366- 19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development programme within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). G.M. acknowledges JPL funding from USRA Contract Number 1638782. A.G.F. is supported by the European Research Council, Consolidator Grant no. 818602.Peer ReviewedPostprint (published version

    Twilight Mesospheric Clouds in Jezero as Observed by MEDA Radiation and Dust Sensor (RDS)

    Get PDF
    The Mars Environmental Dynamics Analyzer instrument, on board NASA's Mars 2020 Perseverance rover, includes a number of sensors to characterize the Martian atmosphere. One of these sensors is the Radiation and Dust Sensor (RDS) that measures the solar irradiance at different wavelengths and geometries. We analyzed the RDS observations made during twilight for the period between sol 71 and 492 of the mission (Ls 39°–262°, Mars Year 36) to characterize the clouds over the Perseverance rover site. Using the ratio between the irradiance at zenith at 450 and 750 nm, we inferred that the main constituent of the detected high-altitude aerosol layers was ice from Ls = 39°–150° (cloudy period), and dust from Ls 150°–262°. A total of 161 twilights were analyzed in the cloudy period using a radiative transfer code and we found: (a) signatures of clouds/hazes in the signals in 58% of the twilights; (b) most of the clouds had altitudes between 40 and 50 km, suggesting water ice composition, and had particle sizes between 0.6 and 2 µm; (c) the cloud activity at sunrise is slightly higher that at sunset, likely due to the differences in temperature; (d) the time period with more cloud detections and with the greatest cloud opacities is during Ls 120°–150°; and (e) a notable decrease in the cloud activity around aphelion, along with lower cloud altitudes and opacities. This decrease in cloud activity indicates lower concentrations of water vapor or cloud condensation nuclei (dust) around this period in the Martian mesosphere.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects no. ESP2014-54256-C4-1-R (also ESP2014-54256-C4-2-R, ESP2014-54256-C4-3-R, and ESP2014-54256-C4-4-R), Spanish Ministry of Science, Innovation and Universities, projects no. ESP2016-79612-C3-1-R (also ESP2016-79612-C3-2-R and ESP2016-79612-C3-3-R), Spanish Ministry of Science and Innovation/State Agency of Research (10.13039/501100011033), projects no. PID2021-126719OB-C41, ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also RTI2018-098728-B-C32 and RTI2018-098728-B-C33), RTI2018-099825-B-C31. RH and ASL were supported by the Spanish project PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/50110001103 and by Grupos Gobierno Vasco IT1742-22. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development programme within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). G.M. acknowledges JPL funding from USRA Contract Number 1638782. ML is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. A. V-R. is supported by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM)

    Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars

    Get PDF
    We identify temporal variations in surface albedo at Jezero crater using first-of-their-kind high-cadence in-situ measurements of reflected shortwave radiation during the first 350 sols of the Mars 2020 mission. Simultaneous Mars Environmental Dynamics Analyzer (MEDA) measurements of pressure, radiative fluxes, winds, and sky brightness indicate that these albedo changes are caused by dust devils under typical conditions and by a dust storm at Ls ∼ 155°. The 17% decrease in albedo caused by the dust storm is one order of magnitude larger than the most apparent changes caused during quiescent periods by dust devils. Spectral reflectance measurements from Mastcam-Z images before and after the storm indicate that the decrease in albedo is mainly caused by dust removal. The occurrence of albedo changes is affected by the intensity and proximity of the convective vortex, and the availability and mobility of small particles at the surface. The probability of observing an albedo change increases with the magnitude of the pressure drop (ΔP): changes were detected in 3.5%, 43%, and 100% of the dust devils with ΔP 2.5 Pa and ΔP > 4.5 Pa, respectively. Albedo changes were associated with peak wind speeds above 15 m·s−1. We discuss dust removal estimates, the observed surface temperature changes coincident with albedo changes, and implications for solar-powered missions. These results show synergies between multiple instruments (MEDA, Mastcam-Z, Navcam, and the Supercam microphone) that improve our understanding of aeolian processes on Mars.This research has been funded by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM), by the Spanish State Research Agency (AEI) Project MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (CSIC/INTA), by the Spanish Ministry of Science and Innovation (MCIN)/State Agency of Research (10.13039/501100011033) project RTI2018-098728-B-C31, and by the project PID2021-126719OB-C41, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. RH, ASL and AM were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). We want to thank J. Bell for processing Mastcam-Z projections showing the entire TIRS FOV and to S. Navarro and the entire team for generating the processed wind sensor data

    Winds at the Mars 2020 Landing Site. 2. Wind Variability and Turbulence

    Get PDF
    Wind speeds measured by the Mars 2020 Perseverance rover in Jezero crater were fitted as a Weibull distribution. InSight wind data acquired in Elysium Planitia were also used to contextualize observations. Jezero winds were found to be much calmer on average than in previous landing sites, despite the intense aeolian activity observed. However, a great influence of turbulence and wave activity was observed in the wind speed variations, thus driving the probability of reaching the highest wind speeds at Jezero, instead of sustained winds driven by local, regional, or large-scale circulation. The power spectral density of wind speed fluctuations follows a power-law, whose slope deviates depending on the time of day from that predicted considering homogeneous and isotropic turbulence. Daytime wave activity is related to convection cells and smaller eddies in the boundary layer, advected over the crater. The signature of convection cells was also found during dust storm conditions, when prevailing winds were consistent with a tidal drive. Nighttime fluctuations were also intense, suggesting strong mechanical turbulence. Convective vortices were usually involved in rapid wind fluctuations and extreme winds, with variations peaking at 9.2 times the background winds. Transient high wind events by vortex-passages, turbulence, and wave activity could be driving aeolian activity at Jezero. We report the detection of a strong dust cloud of 0.75–1.5 km in length passing over the rover. The observed aeolian activity had major implications for instrumentation, with the wind sensor suffering damage throughout the mission, probably due to flying debris advected by winds.The authors acknowledge and thank the Mars 2020 team. The authors would like to thank Editors and two anonymous reviewers for their constructive reviews, which greatly improved this manuscript. This work is supported by the Spanish Ministry of Science and Innovation, under project RTI2018-098728-B-C31. The derived data presented in this work were processed in the DPS24PA system, which is supported by project no. DV2020-ATM-A01. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The UPV/EHU team is supported by Grant PID2019-109467GB-I00 funded by 1042 MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22

    Near Surface Atmospheric Temperatures at Jezero From Mars 2020 MEDA Measurements

    Get PDF
    The Mars Environmental Dynamics Analyzer instrument on Mars 2020 has five Atmospheric Temperature Sensors at two altitudes (0.84 and 1.45 m) plus a Thermal InfraRed Sensor that measures temperatures on the surface and at ∼40 m. We analyze the measurements from these sensors to describe the evolution of temperatures in Jezero up to mission sol 400 (solar longitude LS = 13°–203°). The diurnal thermal cycle is characterized by a daytime convective period and a nocturnal stable atmosphere with a variable thermal inversion. We find a linear relationship between the daytime temperature fluctuations and the vertical thermal gradient with temperature fluctuations that peak at noon with typical values of 2.5 K at 1.45 m. In the late afternoon (∼17:00 Local True Solar Time), the atmosphere becomes vertically isothermal with vanishing fluctuations. We observe very small seasonal changes in air temperatures during the period analyzed. This is related to small changes in solar irradiation and dust opacity. However, we find significant changes in surface temperatures that are related to the variety of thermal inertias of the terrains explored along the traverse of Perseverance. These changes strongly influence the vertical thermal gradient, breaking the nighttime thermal inversion over terrains of high thermal inertia. We explore possible detections of atmospheric tides on near-surface temperatures and we examine variations in temperatures over timescales of a few sols that could be indicative of atmospheric waves affecting near-surface temperatures. We also discuss temperatures during a regional dust storm at LS = 153°–156° that simultaneously warmed the near surface atmosphere while cooling the surface.We are very grateful to the entire Mars 2020 science operations team. We would like to thank two anonymous reviewers for comments and suggestions that helped us to improve the quality of the manuscript. A. Munguira is supported by the grant PRE2020-092562 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future.” R. Hueso and A. Sánchez-Lavega are supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1742-22. US coauthors have been funded by NASA's STMD, HEOMD, and SMD. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). B. Chide is supported by the Director's Postdoctoral Fellowship from the Los Alamos National Laboratory. M. Lemmon is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. R. Lorenz was supported by JPL contract 1655893. G. Martínez acknowledges JPL funding from USRA Contract Number 1638782. A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). Researchers based in France acknowledge support from CNES for their work on Perseverance

    Nocturnal Turbulence at Jezero Crater as Determined From MEDA Measurements and Modeling

    Get PDF
    Mars 2020 Mars Environmental Dynamics Analyzer (MEDA) instrument data acquired during half of a Martian year (Ls 13°–180°), and modeling efforts with the Mars Regional Atmospheric Modeling System (MRAMS) and the Mars Climate Database (MCD) enable the study of the seasonal evolution and variability of nocturnal atmospheric turbulence at Jezero crater. Nighttime conditions in Mars's Planetary Boundary Layer are highly stable because of strong radiative cooling that efficiently inhibits convection. However, MEDA nighttime observations of simultaneous rapid fluctuations in horizontal wind speed and air temperatures suggest the development of nighttime turbulence in Jezero crater. Mesoscale modeling with MRAMS also shows a similar pattern and enables us to investigate the origins of this turbulence and the mechanisms at play. As opposed to Gale crater, less evidence of turbulence from breaking mountain wave activity was found in Jezero during the period studied with MRAMS. On the contrary, the model suggests that nighttime turbulence at Jezero crater is explained by increasingly strong wind shear produced by the development of an atmospheric bore-like disturbance at the nocturnal inversion interface. These atmospheric bores are produced by downslope winds from the west rim undercutting a strong low-level jet aloft from ∼19:00 to 01:00 LTST and from ∼01:00 LTST to dawn when undercutting weak winds aloft. The enhanced wind shear leads to a reduction in the Richardson number and an onset of mechanical turbulence. Once the critical Richardson Number is reached (Ri ∼ <0.25), shear instabilities can mix warmer air aloft down to the surface.This research was funded by Grant RTI2018-098728-B-C31 and PN2021-PID2021-126719OB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. AM, ASL, TR, and RH were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate. CEN was supported by funding from the Mars 2020 mission, part of the NASA Mars Exploration Program

    Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements

    Get PDF
    The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.The UPV/EHU team (Spain) is supported by Grant PID2019-109467GB-I00 funded by 1042 MCIN/AEI/10.13039/501100011033/ and by Groups Gobierno Vasco IT1742-22. GM wants to acknowledge JPL funding from USRA Contract Number 1638782. A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). GM wants to acknowledge JPL funding from USRA Contract Number 1638782

    The sound of a Martian dust devil

    Get PDF
    Dust devils (convective vortices loaded with dust) are common at the surface of Mars, particularly at Jezero crater, the landing site of the Perseverance rover. They are indicators of atmospheric turbulence and are an important lifting mechanism for the Martian dust cycle. Improving our understanding of dust lifting and atmospheric transport is key for accurate simulation of the dust cycle and for the prediction of dust storms, in addition to being important for future space exploration as grain impacts are implicated in the degradation of hardware on the surface of Mars. Here we describe the sound of a Martian dust devil as recorded by the SuperCam instrument on the Perseverance rover. The dust devil encounter was also simultaneously imaged by the Perseverance rover's Navigation Camera and observed by several sensors in the Mars Environmental Dynamics Analyzer instrument. Combining these unique multi-sensorial data with modelling, we show that the dust devil was around 25m large, at least 118m tall, and passed directly over the rover travelling at approximately 5ms-1. Acoustic signals of grain impacts recorded during the vortex encounter provide quantitative information about the number density of particles in the vortex. The sound of a Martian dust devil was inaccessible until SuperCam microphone recordings. This chance dust devil encounter demonstrates the potential of acoustic data for resolving the rapid wind structure of the Martian atmosphere and for directly quantifying wind-blown grain fluxes on Mars.We are most grateful for the support of the Mars 2020 project team, including hardware and operation teams. This project was supported in the US by the NASA Mars Exploration Program, and in France by CNES. It is based on observations with SuperCam embarked on Perseverance (Mars2020). The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, is under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-author (M.T.) acknowledges funding from NASA’s Space Technology Mission Directorate and the Science Mission Directorate. A. V-R is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). R.H. and A.S-L. were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22. A.M. was supported by Grant PRE2020-092562 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”. R.L. acknowledges InSight PSP Grant 80NSSC18K1626 as well as the Mars 2020 project. B.C. is supported by the Director’s Postdoctoral Fellowship from the Los Alamos National Laboratory, grant 20210960PRD3. JA.RM., M.M, J.T and J.G-E were supported by MCIN/AEI’s Grant RTI2018-098728-B-C31

    Convective Vortices and Dust Devils Detected and Characterized by Mars 2020

    Get PDF
    We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.The authors are very grateful to the entire Mars 2020 science operations team. The authors would also like to thank Lori Fenton and an anonymous reviewer for many suggestions that greatly improved the manuscript. This work was supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22 and by the Spanish National Research, Development and Innovation Program, through the Grants RTI2018-099825-B-C31, ESP2016-80320-C2-1-R, and ESP2014-54256-C4-3-R. Baptiste Chide is supported by the Director's Postdoctoral Fellowship from the Los Alamos National Laboratory. M. Lemmon is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. R. Lorenz was supported by JPL contract 1655893. Germán Martínez acknowledges JPL funding from USRA Contract Number 1638782. A. Munguira was supported by Grant PRE2020-092562 funded by MCIN/AEI and by “ESF Investing in your future.” A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Finnish researchers acknowledge the Academy of Finland Grant 328 310529. Researchers based in France acknowledge support from the CNES for their work on Perseverance
    corecore