12,999 research outputs found

    Standardization of protocol for <i>Vibrio</i> challenge in specific pathogen-free (SPF) shrimp (<i>Litopenaeus vannamei</i>)

    Get PDF
    This study was conducted to standardize the protocol for Vibrio challenge in specific pathogen-free (SPF) shrimp (Litopenaeus vannamei). Shrimp, from postlarvae15 to juvenile, were challenged with Vibrio campbellii, V. harveyi 642, V. harveyi E022, V. harveyi E2, and V. penaeicida by immersion and injection in normal as well as stress conditions. For immersion challenge, shrimp were immersed in seawater containing 103, 105, and 107 CFU mL-1 of bacterial cells. They were fed with Artemia nauplii, Artemia charged with V. campbellii, a piece of shrimp meat which was injected with the Vibrio campbellii or artificial feed during five days experiment. Bacterial density in the water and shrimp samples was determined at the end of experiment. There was no significant difference in mortality between the control and Vibrio challenged groups in normal conditions (p>0.05). Therefore, different stress factors were tested such as starvation, salinity and ammonium. 12h exposure to 40 and 50 mgL-1 NH4 + (pH = 7.9- 8.1) were found as sublethal doses for postlarvae and juvenile shrimps respectively. Starvation, ammonium stress (before and during challenge periods), and salinity stress at 5, 10, 20 gL-1 did not enhance the susceptibility of shrimp to Vibrio challenge by immersion. In absence of stress, SPF shrimp is not susceptible to Vibrio either by immersion or injection. Only in ammonium stress, SPF shrimp is susceptible to Vibrios to a large extent by injection with 106 CFU shrimp-1. Vibrio campbellii was found as the most virulent strain towards SPF shrimp among five tested strains

    Spectral densities for hot QCD plasmas in a leading log approximation

    Full text link
    We compute the spectral densities of TμνT^{\mu\nu} and JμJ^{\mu} in high temperature QCD plasmas at small frequency and momentum,\, ω,k∼g4T\omega,k \sim g^4 T. The leading log Boltzmann equation is reformulated as a Fokker Planck equation with non-trivial boundary conditions, and the resulting partial differential equation is solved numerically in momentum space. The spectral densities of the current, shear, sound, and bulk channels exhibit a smooth transition from free streaming quasi-particles to ideal hydrodynamics. This transition is analyzed with conformal and non-conformal second order hydrodynamics, and a second order diffusion equation. We determine all of the second order transport coefficients which characterize the linear response in the hydrodynamic regime.Comment: 39 pages, 6 figures. v3 contains an analysis of the bulk channel with non-conformal hydrodynamics. Otherwise no significant change

    Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data

    Get PDF
    BACKGROUND: Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. RESULTS: In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). CONCLUSION: Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites. We recommend: (i) selection of models by using backward elimination rather than AIC or AICc, (ii) use a stringent cut-off, e.g., p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses

    Aquarius Final Release Product and Full Range Calibration of L-band Radiometers

    Get PDF
    Aquarius final product V5.0 has been released. The dataset includes close to four years of global radiometric measurements at L-band. The mission's objective was to monitor sea surface salinity, but other applications of its data over land and the cryosphere have been developed. For this reason, it is important to have accurate calibration over the full range of antenna temperatures from natural targets. It is also needed in order to combine Aquarius measurements with other L-band sensors. Aquarius calibration is strongly focused on the ocean. We present a research product which is part of the final release and aims at producing an accurate calibration from the low end (celestial sky) to the high end (land and ice) of the brightness temperature scale. We calibrate the Aquarius radiometers using measurements over the Sky and oceans and assess the new calibration using measurements over land

    Emissivity of Frozen Regions Retrieved from Aquarius Measurements

    Get PDF
    The land emissivity model used in the Aquarius data processing has been updated for the latest data release (V5.0). In order to improve the estimates of the brightness temperatures of frozen regions, the new model uses values of surface emissivity that have been estimated from the Aquarius measurements averaged over the entire duration of the mission. The retrieved emissivities depend on the geographic location, but they depend only marginally on time, temperature and snow cover

    Lifetime Effects in Color Superconductivity at Weak Coupling

    Get PDF
    Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.Comment: 16 pages, 2 figures; explanations on the role of the Meissner effect added; 2 references added; accepted for publication in PR

    Debye screening and Meissner effect in a two-flavor color superconductor

    Full text link
    I compute the gluon self-energy in a color superconductor with two flavors of massless quarks, where condensation of Cooper pairs breaks SU(3)_c to SU(2)_c. At zero temperature, there is neither Debye screening nor a Meissner effect for the three gluons of the unbroken SU(2)_c subgroup. The remaining five gluons attain an electric as well as a magnetic mass. For temperatures approaching the critical temperature for the onset of color superconductivity, or for gluon momenta much larger than the color-superconducting gap, the self-energy assumes the form given by the standard hard-dense loop approximation. The gluon self-energy determines the coefficient of the kinetic term in the effective low-energy theory for the condensate fields.Comment: 29 pages, RevTe

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes

    Hamiltonian lattice QCD at finite chemical potential

    Full text link
    At sufficiently high temperature and density, quantum chromodynamics (QCD) is expected to undergo a phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formulation the Monte Carlo method works well for QCD at finite temperature, however, it breaks down at finite chemical potential. We develop a Hamiltonian approach to lattice QCD at finite chemical potential and solve it in the case of free quarks and in the strong coupling limit. At zero temperature, we calculate the vacuum energy, chiral condensate, quark number density and its susceptibility, as well as mass of the pseudoscalar, vector mesons and nucleon. We find that the chiral phase transition is of first order, and the critical chemical potential is μC=mdyn(0)\mu_C =m_{dyn}^{(0)} (dynamical quark mass at μ=0\mu=0). This is consistent with μC≈MN(0)/3\mu_C \approx M_N^{(0)}/3 (where MN(0)M_N^{(0)} is the nucleon mass at μ=0\mu=0).Comment: Final version appeared in Phys. Rev.

    Gluon self-energy in a two-flavor color superconductor

    Get PDF
    The energy and momentum dependence of the gluon self-energy is investigated in a color superconductor with two flavors of massless quarks. The presence of a color-superconducting quark-quark condensate modifies the gluon self-energy for energies which are of the order of the gap parameter. For gluon energies much larger than the gap, the self-energy assumes the form given by the standard hard-dense loop approximation. It is shown that this modification of the gluon self-energy does not affect the magnitude of the gap to leading and subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require
    • …
    corecore