32,731 research outputs found

    The Nature of Novelty Detection

    Full text link
    Sentence level novelty detection aims at reducing redundant sentences from a sentence list. In the task, sentences appearing later in the list with no new meanings are eliminated. Aiming at a better accuracy for detecting redundancy, this paper reveals the nature of the novelty detection task currently overlooked by the Novelty community −- Novelty as a combination of the partial overlap (PO, two sentences sharing common facts) and complete overlap (CO, the first sentence covers all the facts of the second sentence) relations. By formalizing novelty detection as a combination of the two relations between sentences, new viewpoints toward techniques dealing with Novelty are proposed. Among the methods discussed, the similarity, overlap, pool and language modeling approaches are commonly used. Furthermore, a novel approach, selected pool method is provided, which is immediate following the nature of the task. Experimental results obtained on all the three currently available novelty datasets showed that selected pool is significantly better or no worse than the current methods. Knowledge about the nature of the task also affects the evaluation methodologies. We propose new evaluation measures for Novelty according to the nature of the task, as well as possible directions for future study.Comment: This paper pointed out the future direction for novelty detection research. 37 pages, double spaced versio

    Cost-saving or Cost-enhancing Mergers: the Impact of the Distribution of Roles in Oligopoly

    Get PDF
    Horizontal Merger, Efficiency gains, Efficiency losses, Stackelberg oligopoly, Market power

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the â„“1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    An Inexact Primal-Dual Smoothing Framework for Large-Scale Non-Bilinear Saddle Point Problems

    Full text link
    We develop an inexact primal-dual first-order smoothing framework to solve a class of non-bilinear saddle point problems with primal strong convexity. Compared with existing methods, our framework yields a significant improvement over the primal oracle complexity, while it has competitive dual oracle complexity. In addition, we consider the situation where the primal-dual coupling term has a large number of component functions. To efficiently handle this situation, we develop a randomized version of our smoothing framework, which allows the primal and dual sub-problems in each iteration to be solved by randomized algorithms inexactly in expectation. The convergence of this framework is analyzed both in expectation and with high probability. In terms of the primal and dual oracle complexities, this framework significantly improves over its deterministic counterpart. As an important application, we adapt both frameworks for solving convex optimization problems with many functional constraints. To obtain an ε\varepsilon-optimal and ε\varepsilon-feasible solution, both frameworks achieve the best-known oracle complexities (in terms of their dependence on ε\varepsilon)
    • …
    corecore