We develop an inexact primal-dual first-order smoothing framework to solve a
class of non-bilinear saddle point problems with primal strong convexity.
Compared with existing methods, our framework yields a significant improvement
over the primal oracle complexity, while it has competitive dual oracle
complexity. In addition, we consider the situation where the primal-dual
coupling term has a large number of component functions. To efficiently handle
this situation, we develop a randomized version of our smoothing framework,
which allows the primal and dual sub-problems in each iteration to be solved by
randomized algorithms inexactly in expectation. The convergence of this
framework is analyzed both in expectation and with high probability. In terms
of the primal and dual oracle complexities, this framework significantly
improves over its deterministic counterpart. As an important application, we
adapt both frameworks for solving convex optimization problems with many
functional constraints. To obtain an ε-optimal and
ε-feasible solution, both frameworks achieve the best-known oracle
complexities (in terms of their dependence on ε)