62 research outputs found
Critical thermodynamics of three-dimensional chiral model for N > 3
The critical behavior of the three-dimensional -vector chiral model is
studied for arbitrary . The known six-loop renormalization-group (RG)
expansions are resummed using the Borel transformation combined with the
conformal mapping and Pad\'e approximant techniques. Analyzing the fixed point
location and the structure of RG flows, it is found that two marginal values of
exist which separate domains of continuous chiral phase transitions and where such
transitions are first-order. Our calculations yield and
. For the structure of RG flows is identical to
that given by the and 1/N expansions with the chiral fixed point
being a stable node. For the chiral fixed point turns out to be a
focus having no generic relation to the stable fixed point seen at small
and large . In this domain, containing the physical values and , phase trajectories approach the fixed point in a spiral-like
manner giving rise to unusual crossover regimes which may imitate varying
(scattered) critical exponents seen in numerous physical and computer
experiments.Comment: 12 pages, 3 figure
Chiral critical behavior in two dimensions from five-loop renormalization-group expansions
We analyse the critical behavior of two-dimensional N-vector spin systems
with noncollinear order within the five-loop renormalization-group
approximation. The structure of the RG flow is studied for different N leading
to the conclusion that the chiral fixed point governing the critical behavior
of physical systems with N = 2 and N = 3 does not coincide with that given by
the 1/N expansion. We show that the stable chiral fixed point for ,
including N = 2 and N = 3, turns out to be a focus. We give a complete
characterization of the critical behavior controlled by this fixed point, also
evaluating the subleading crossover exponents. The spiral-like approach of the
chiral fixed point is argued to give rise to unusual crossover and
near-critical regimes that may imitate varying critical exponents seen in
numerous physical and computer experiments.Comment: 17 pages, 12 figure
The critical behavior of frustrated spin models with noncollinear order
We study the critical behavior of frustrated spin models with noncollinear
order, including stacked triangular antiferromagnets and helimagnets. For this
purpose we compute the field-theoretic expansions at fixed dimension to six
loops and determine their large-order behavior. For the physically relevant
cases of two and three components, we show the existence of a new stable fixed
point that corresponds to the conjectured chiral universality class. This
contradicts previous three-loop field-theoretical results but is in agreement
with experiments.Comment: 4 pages, RevTe
Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy
We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with
cubic anisotropy. We compute and analyze the fixed-dimension perturbative
expansion of the renormalization-group functions to four loops. The relations
of these models with N-color Ashkin-Teller models, discrete cubic models,
planar model with fourth order anisotropy, and structural phase transition in
adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic
anisotropy) are compatible with the existence of a line of fixed points joining
the Ising and the O(2) fixed points. Along this line the exponent has
the constant value 1/4, while the exponent runs in a continuous and
monotonic way from 1 to (from Ising to O(2)). For N\geq 3 we find a
cubic fixed point in the region , which is marginally stable or
unstable according to the sign of the perturbation. For the physical relevant
case of N=3 we find the exponents and at the cubic
transition.Comment: 14 pages, 9 figure
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
Constraining the Nature of Dark Energy using the SKA
We investigate the potential of the Square Kilometer Array Telescope (SKA) to
constrain the sound speed of dark energy. The Integrated Sachs Wolfe (ISW)
effect results in a significant power spectrum signal when CMB temperature
anisotropies are cross-correlated with galaxies detectable with the SKA in HI.
We consider using this measurement, the autocorrelation of HI galaxies and the
CMB temperature power spectrum to derive constraints on the sound speed. We
study the contributions to the cross-correlation signal made by galaxies at
different redshifts and use redshift tomography to improve the signal-to-noise.
We use a chi-square analysis to estimate the significance of detecting a sound
speed different from that expected in quintessence models, finding that there
is potential to distinguish very low sound speeds from the quintessence value.Comment: 8 pages, 8 figures; updated references for publication MNRA
The Restriction of Zoonotic PERV Transmission by Human APOBEC3G
The human APOBEC3G protein is an innate anti-viral factor that can dominantly inhibit the replication of some endogenous and exogenous retroviruses. The prospects of purposefully harnessing such an anti-viral defense are under investigation. Here, long-term co-culture experiments were used to show that porcine endogenous retrovirus (PERV) transmission from pig to human cells is reduced to nearly undetectable levels by expressing human APOBEC3G in virus-producing pig kidney cells. Inhibition occurred by a deamination-independent mechanism, likely after particle production but before the virus could immortalize by integration into human genomic DNA. PERV inhibition did not require the DNA cytosine deaminase activity of APOBEC3G and, correspondingly, APOBEC3G-attributable hypermutations were not detected. In contrast, over-expression of the sole endogenous APOBEC3 protein of pigs failed to interfere significantly with PERV transmission. Together, these data constitute the first proof-of-principle demonstration that APOBEC3 proteins can be used to fortify the innate anti-viral defenses of cells to prevent the zoonotic transmission of an endogenous retrovirus. These studies suggest that human APOBEC3G-transgenic pigs will provide safer, PERV-less xenotransplantation resources and that analogous cross-species APOBEC3-dependent restriction strategies may be useful for thwarting other endogenous as well as exogenous retrovirus infections
An updated view of hypothalamic-vascular-pituitary unit function and plasticity
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic–pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment
Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma
Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-catnc) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-catnc cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-catnc cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-catnc cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0957-9) contains supplementary material, which is available to authorized users
- …