5 research outputs found

    RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks

    No full text
    RAD51 promotes homology-directed repair (HDR), replication fork reversal, and stalled fork protection. Defects in these functions cause genomic instability and tumorigenesis but also generate hypersensitivity to cancer therapeutics. Here we describe the identification of RADX as an RPA-like, single-strand DNA binding protein. RADX is recruited to replication forks, where it prevents fork collapse by regulating RAD51. When RADX is inactivated, excessive RAD51 activity slows replication elongation and causes double-strand breaks. In cancer cells lacking BRCA2, RADX deletion restores fork protection without restoring HDR. Furthermore, RADX inactivation confers chemotherapy and PARP inhibitor resistance to cancer cells with reduced BRCA2/RAD51 pathway function. By antagonizing RAD51 at forks, RADX allows cells to maintain a high capacity for HDR while ensuring that replication functions of RAD51 are properly regulated. Thus, RADX is essential to achieve the proper balance of RAD51 activity to maintain genome stability

    Conidium Specific Polysaccharides in Aspergillus fumigatus

    No full text
    Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of β-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall β-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways

    Communication between DNA polymerases and Replication Protein A within the archaeal replisome

    No full text
    Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrated that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveiled how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site. Finally, RPA was shown to stimulate the activity of PriSL in a WH-dependent manner. This study provides a molecular understanding of the WH-mediated regulatory activity in conserved central replication factors such as RPA, which regulate genome maintenance in Archaea and Eukaryotes.</div

    Communication between DNA polymerases and Replication Protein A within the archaeal replisome

    No full text
    Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrated that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveiled how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site. Finally, RPA was shown to stimulate the activity of PriSL in a WH-dependent manner. This study provides a molecular understanding of the WH-mediated regulatory activity in conserved central replication factors such as RPA, which regulate genome maintenance in Archaea and Eukaryotes.</div

    DNA-binding mechanism and evolution of replication protein A

    No full text
    Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes
    corecore