3 research outputs found

    Association of Salivary Human Papillomavirus Infection and Oral and Oropharyngeal Cancer: A Meta-Analysis

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) infection has been recognized as an important risk factor in cancer. The purpose of this systematic review and meta-analysis was to determine the prevalence and effect size of association between salivary HPV DNA and the risk of developing oral and oropharyngeal cancer. METHODS: A systematic literature search of PubMed, EMBASE, Web of Science, LILACS, Scopus and the Cochrane Library was performed, without language restrictions or specified start date. Pooled data were analyzed by calculating odds ratios (ORs) and 95% confidence intervals (CIs). Quality assessment was performed using the Newcastle-Ottawa Scale (NOS). RESULTS: A total of 1672 studies were screened and 14 met inclusion criteria for the meta-analysis. The overall prevalence of salivary HPV DNA for oral and oropharyngeal carcinoma was 43.2%, and the prevalence of salivary HPV16 genotype was 27.5%. Pooled results showed a significant association between salivary HPV and oral and oropharyngeal cancer (OR = 4.94; 2.82-8.67), oral cancer (OR = 2.58; 1.67-3.99) and oropharyngeal cancer (OR = 17.71; 6.42-48.84). Significant associations were also found between salivary HPV16 and oral and oropharyngeal cancer (OR = 10.07; 3.65-27.82), oral cancer (OR = 2.95; 1.23-7.08) and oropharyngeal cancer (OR = 38.50; 22.43-66.07). CONCLUSIONS: Our meta-analysis demonstrated the association between salivary HPV infection and the incidence of oral and oropharyngeal cancer indicating its value as a predictive indicator

    Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study

    Get PDF
    BACKGROUND: Circulating tumor cells (CTCs) are an established prognostic marker in castration-resistant prostate cancer but have received little attention in localized high-risk disease. We studied the detection rate of CTCs in patients with high-risk prostate cancer before and after androgen deprivation therapy and radiotherapy to assess its value as a prognostic and monitoring marker. PATIENTS AND METHODS: We performed a prospective analysis of CTCs in the peripheral blood of 65 treatment-naive patients with high-risk prostate cancer. EpCAM-positive CTCs were enumerated using the CELLSEARCH system at 4 timepoints. A cut off of 0 vs >/= 1 CTC/7.5 ml blood was defined as a threshold for negative versus positive CTCs status. RESULTS: CTCs were detected in 5/65 patients (7.5%) at diagnosis, 8/62 (12.9%) following neoadjuvant androgen deprivation and 11/59 (18.6%) at the end of radiotherapy, with a median CTC count/7.5 ml of 1 (range, 1-136). Only 1 patient presented a positive CTC result 9 months after radiotherapy. Positive CTC status (at any timepoint) was not significantly associated with any clinical or pathologic factors. However, when we analyzed variations in CTC patterns following treatment, we observed a significant association between conversion of CTCs and stages T3 (P = 0.044) and N1 (P = 0.002). Detection of CTCs was not significantly associated with overall survival (P > 0.40). CONCLUSIONS: Our study showed a low detection rate for CTCs in patients with locally advanced high-risk prostate cancer. The finding of a de novo positive CTC count after androgen deprivation therapy is probably due to a passive mechanism associated with the destruction of the tumor. Further studies with larger samples and based on more accurate detection of CTCs are needed to determine the potential prognostic and therapeutic value of this approach in non-metastatic prostate cancer. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT01800058

    Global Gene Expression Characterization of Circulating Tumor Cells in Metastasic Castration-Resistant Prostate Cancer Patients

    Get PDF
    BACKGROUND: Current therapeutic options in the course of metastatic castration-resistant prostate cancers (mCRPC) reinforce the need for reliable tools to characterize the tumor in a dynamic way. Circulating tumor cells (CTCs) have emerged as a viable solution to the problem, whereby patients with a variety of solid tumors, including PC, often do not have recent tumor tissue available for analysis. The biomarker characterization in CTCs could provide insights into the current state of the disease and an overall picture of the intra-tumor heterogeneity. METHODS: in the present study, we applied a global gene expression characterization of the CTC population from mCRPC (n = 9), with the goal to better understand the biology of these cells and identify the relevant molecules favoring this tumor progression. RESULTS: This analysis allowed the identification of 50 genes specifically expressed in CTCs from patients. Six of these markers (HOXB13, QKI, MAOA, MOSPD1, SDK1, and FGD4), were validated in a cohort of 28 mCRPC, showing clinical interest for the management of these patients. Of note, the activity of this CTC signature was related to the regulation of MYC, a gene strongly implicated in the biology of mCRPC. CONCLUSIONS: Overall, our results represent new evidence on the great value of CTCs as a non-invasive biopsy to characterize PC
    corecore