29 research outputs found

    Red blood cell extracellular vesicles as robust carriers of RNA-based therapeutics

    Get PDF
    One of the major challenges of RNA-based therapeutics is the method for delivery of RNA molecules. In a recent article (Nat Commun 9(1):2359), we described a novel delivery platform for RNA-based drugs using red blood cell extracellular vesicles which can efficiently deliver both small and large RNAs to solid and liquid tumours. Our RBCEVs platform features exceptional merits over conventional RNA delivery methods in biosafety, biocompatibility, efficiency, accessibility, and cost effectiveness

    miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/\u3b2-catenin Signaling Regulation

    Get PDF
    During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson's disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/\u3b2-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson's disease

    Clinical and Virological Features of Dengue in Vietnamese Infants

    Get PDF
    Dengue is a major public health problem in tropical and subtropical countries, including Vietnam. Dengue cases occur in children and young adults; however, severe dengue also occurs in infants less than 1 year of age. Prompt recognition of dengue is important for appropriate case management, particularly in infants in whom febrile illness from other causes is common. We describe the clinical picture, virological and immunological characteristics of infants with dengue admitted to three hospitals in southern Vietnam, compared with infants admitted with fever not due to dengue. We show that infants with dengue are difficult to distinguish from those with other febrile illnesses based on signs and symptoms at presentation, and so laboratory tests to confirm dengue virus infection may be useful for diagnosis and management. Conventional diagnostic methods for dengue have low sensitivity early in infection, and we show that an alternative antigen-detection assay that has demonstrated good sensitivity and specificity in older age groups also performs well in infants. This study will help to inform the diagnosis and management of dengue in infants

    Endocytosis of red blood cell extracellular vesicles by macrophages leads to cytoplasmic heme release and prevents foam cell formation in atherosclerosis

    No full text
    Abstract Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme‐like phenotype, characterized by upregulation of heme oxygenase‐1 (HO‐1) and the ATP‐binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF‐α under inflammatory stimulation. The upregulation of HO‐1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low‐density lipoproteins (oxLDL)‐treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high‐fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis

    Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b

    No full text
    Tumour cells release large quantities of extracellular vesicles (EVs) to mediate their interactions with other cells in the tumour microenvironment. To identify host cells that naturally take up EVs from tumour cells, we created breast cancer cell lines secreting fluorescent EVs. These fluorescent EVs are taken up most robustly by fibroblasts within the tumour microenvironment. RNA sequencing indicated that miR-125b is one of the most abundant microRNAs secreted by mouse triple-negative breast cancer 4T1 and 4TO7 cells. Treatment with 4T1 EVs leads to an increase in fibroblast activation in isogenic 4TO7 tumours, which is reversed by blocking miR-125b in 4T1 EVs; hence, miR-125b delivery by EVs is responsible for fibroblast activation in mouse tumour models. miR-125b is also secreted by human breast cancer cells and the uptake of EVs from these cells significantly increases cellular levels of miR-125b and expression of multiple cancer-associated fibroblast markers in resident fibroblasts. Overexpression of miR-125b in both mouse and human fibroblasts leads to an activated phenotype similar to the knockdown of established miR-125b target mRNAs. These data indicate that miR-125b is transferred through EVs from breast cancer cells to normal fibroblasts within the tumour microenvironment and contributes to their development into cancer-associated fibroblasts

    Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy

    No full text
    The RIG-I pathway can be activated by RNA containing 5' triphosphate, leading to type I interferon release and immune activation. Hence, RIG-I agonists have been used to induce immune responses against cancer as potential immunotherapy. However, delivery of 5' triphosphorylated RNA molecules as RIG-I agonists to tumour cells in vivo is challenging due to the susceptibility of these molecules to degradation. In this study, we demonstrate the use of extracellular vesicles (EVs) from red blood cells (RBCs), which are highly amenable for RNA loading and taken up robustly by cancer cells, for RIG-I agonist delivery. We evaluate the anti-cancer activity of two novel RIG-I agonists, the immunomodulatory RNA (immRNA) with a unique secondary structure for efficient RIG-I activation, and a 5' triphosphorylated antisense oligonucleotide with dual function of RIG-I activation and miR-125b inhibition (3p-125b-ASO). We find that RBCEV-delivered immRNA and 3p-125b-ASO trigger the RIG-I pathway, and induce cell death in both mouse and human breast cancer cells. Furthermore, we observe a significant suppression of tumour growth coupled with increased immune cell infiltration mediated by the activation of RIG-I cascade after multiple intratumoral injections of RBCEVs loaded with immRNA or 3p-125b-ASO. Targeted delivery of immRNA using RBCEVs with EGFR-binding nanobody administrated via intrapulmonary delivery facilitates the accumulation of RBCEVs in metastatic cancer cells, leading to potent tumour-specific CD8+ T cells immune response. This contributes to prominent suppression of breast cancer metastasis in the lung. Hence, this study provides a new strategy for efficient RIG-I agonist delivery using RBCEVs for immunotherapy against cancer and cancer metastasis.Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionThis project is funded by the National University of Singapore (grant number NUHSRO/2019/076/STARTUP/02), and the Singapore Ministry of Education (NUHSRO/2020/108/T1/Seed-Mar/04). Gracemary Yap is supported by the NUS Resilient and Growth fellowship (NUS-13), financed by the National Science Foundation of Singapore. This research is also supported by the Singapore Ministry of Health’s National Medical Research Council under its Open Fund – Individual Research Grant (NMRC/OFIRG/0075/2018and OFIRG20nov-0049)

    Hemagglutination inhibiting antibodies and protection against seasonal and pandemic influenza infection.

    Get PDF
    OBJECTIVES: Hemagglutination inhibiting (HI) antibodies correlate with influenza vaccine protection but their association with protection induced by natural infection has received less attention and was studied here. METHODS: 940 people from 270 unvaccinated households participated in active ILI surveillance spanning 3 influenza seasons. At least 494 provided paired blood samples spanning each season. Influenza infection was confirmed by RT-PCR on nose/throat swabs or serum HI assay conversion. RESULTS: Pre-season homologous HI titer was associated with a significantly reduced risk of infection for H3N2 (OR 0.61, 95%CI 0.44-0.84) and B (0.65, 95%CI 0.54-0.80) strains, but not H1N1 strains, whether re-circulated (OR 0.90, 95%CI 0.71-1.15), new seasonal (OR 0.86, 95%CI 0.54-1.36) or pandemic H1N1-2009 (OR 0.77, 95%CI 0.40-1.49). The risk of seasonal and pandemic H1N1 decreased with increasing age (both p < 0.0001), and the risk of pandemic H1N1 decreased with prior seasonal H1N1 (OR 0.23, 95%CI 0.08-0.62) without inducing measurable A/California/04/2009-like titers. CONCLUSIONS: While H1N1 immunity was apparent with increasing age and prior infection, the effect of pre-season HI titer was at best small, and weak for H1N1 compared to H3N2 and B. Antibodies targeting non-HI epitopes may have been more important mediators of infection-neutralizing immunity for H1N1 compared to other subtypes in this setting
    corecore