2 research outputs found

    Symmetry-invariant quantum machine learning force fields

    Full text link
    Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.Comment: 12 pages, 8 figure

    Analytic Filter-Function Derivatives for Quantum Optimal Control

    No full text
    Auto-correlated noise appears in many solid state qubit systems and hence needs to be taken into account when developing gate operations for quantum information processing. However, explicitly simulating this kind of noise is often less efficient than approximate methods. Here, we focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated classical noise. Hence, this formalism can be combined with optimal control algorithms to design control pulses, which optimally implement quantum gates. To enable the use of gradient-based algorithms with fast convergence, we present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results. When comparing pulse optimization using our derivatives to a gradient-free approach, we find that the gradient-based method is roughly two orders of magnitude faster for our test cases. We also provide a modular computational implementation compatible with quantum optimal control packages.Comment: Revised arguments in section 7, results unchanged. 13 pages, 7 figures. Open-source software available at https://github.com/qutech/filter_function
    corecore