109,996 research outputs found

    Stratorotational instability in Taylor-Couette flow heated from above

    Full text link
    We investigate the instability and nonlinear saturation of temperature-stratified Taylor-Couette flows in a finite height cylindrical gap and calculate angular-momentum transport in the nonlinear regime. The model is based on an incompressible fluid in Boussinesq approximation with a positive axial temperature gradient applied. While both ingredients itself, the differential rotation as well as the stratification due to the temperature gradient, are stable, together the system becomes subject of the stratorotational instability and nonaxisymmetric flow pattern evolve. This flow configuration transports angular momentum outwards and will therefor be relevant for astrophysical applications. The belonging viscosity α\alpha coefficient is of the order of unity if the results are adapted to the size of an accretion disc. The strength of the stratification, the fluids Prandtl number and the boundary conditions applied in the simulations are well-suited too for a laboratory experiment using water and a small temperature gradient below five Kelvin. With such a rather easy realizable set-up the SRI and its angular momentum transport could be measured in an experiment.Comment: 10 pages, 6 figures, revised version appeared in J. Fluid Mech. (2009), vol. 623, pp. 375--38

    An Approximation to the Likelihood Function for Band-Power Estimates of CMB Anisotropies

    Full text link
    Band-power estimates of cosmic microwave background fluctuations are now routinely used to place constraints on cosmological parameters. For this to be done in a rigorous fashion, the full likelihood function of band-power estimates must be employed. Even for Gaussian theories, this likelihood function is not itself Gaussian, for the simple reason that band-powers measure the {\em variance} of the random sky fluctuations. In the context of Gaussian sky fluctuations, we use an ideal situation to motivate a general form for the full likelihood function from a given experiment. This form contains only two free parameters, which can be determined if the 68% and 95% confidence intervals of the true likelihood function are known. The ansatz works remarkably well when compared to the complete likelihood function for a number of experiments. For application of this kind of approach, we suggest that in the future both 68% and 95% (and perhaps also the 99.7%) confidence intervals be given when reporting experimental results.Comment: Published versio

    Equation of state of strongly coupled Hamiltonian lattice QCD at finite density

    Get PDF
    We calculate the equation of state of strongly coupled Hamiltonian lattice QCD at finite density by constructing a solution to the equation of motion corresponding to an effective Hamiltonian using Wilson fermions. We find that up to and beyond the chiral symmetry restoration density the pressure of the quark Fermi sea can be negative indicating its mechanical instability. This result is in qualitative agreement with continuum models and should be verifiable by future numerical simulations.Comment: 14 pages, 2 EPS figures. Revised version - added discussion on the equation of stat

    A New Local Temperature Distribution Function for X-ray Clusters: Cosmological Applications

    Get PDF
    (abridged) We present a new determination of the local temperature function of X-ray clusters. We use a new sample comprising fifty clusters for which temperature information is now available, making it the largest complete sample of its kind. It is therefore expected to significantly improve the estimation of the temperature distribution function of moderately hot clusters. We find that the resulting temperature function is higher than previous estimations, but agrees well with the temperature distribution function inferred from the BCS and RASS luminosity function. We have used this sample to constrain the amplitude of the matter fluctuations on cluster's scale of 8Ω03−1h−18\sqrt[3]{\Omega_0}^{-1}h^{-1}Mpc, assuming a mass-temperature relation based on recent numerical simulations. We find σ8=0.6±0.02\sigma_8 = 0.6\pm 0.02 for an Ω0=1\Omega_0 = 1 model. Our sample provides an ideal reference at z∼0z \sim 0 to use in the application of the cosmological test based on the evolution of X-ray cluster abundance (Oukbir & Blanchard 1992, 1997). Using Henry's sample, we find that the abundance of clusters at z=0.33z = 0.33 is significantly smaller, by a factor larger than 2, which shows that the EMSS sample provides strong evidence for evolution of the cluster abundance. A likelihood analysis leads to a rather high value of the mean density parameter of the universe: Ω=0.92±0.22\Omega =0.92 \pm 0.22 (open case) and Ω=0.86±0.25\Omega =0.86 \pm 0.25 (flat case), which is consistent with a previous, independent estimation based on the full EMSS sample by Sadat et al.(1998). Some systematic uncertainties which could alter this result are briefly discussed.Comment: 31 pages, 12 figures, mathches the version published in Astronomy and Astrophysic
    • …
    corecore