1,768 research outputs found

    Kohn Anomalies and Electron-Phonon Interaction in Graphite

    Full text link
    We demonstrate that graphite phonon dispersions have two Kohn anomalies at the Gamma-E_2g and K-A'1 modes. The anomalies are revealed by two sharp kinks. By an exact analytic derivation, we show that the slope of these kinks is proportional to the square of the electron-phonon coupling (EPC). Thus, we can directly measure the EPC from the experimental dispersions. The Gamma-E_2g and K-A'1 EPCs are particularly large, whilst they are negligible for all the other modes at Gamma and K.Comment: 4 pages, 2 figure

    An adaptive stigmergy-based system for evaluating technological indicator dynamics in the context of smart specialization

    Full text link
    Regional innovation is more and more considered an important enabler of welfare. It is no coincidence that the European Commission has started looking at regional peculiarities and dynamics, in order to focus Research and Innovation Strategies for Smart Specialization towards effective investment policies. In this context, this work aims to support policy makers in the analysis of innovation-relevant trends. We exploit a European database of the regional patent application to determine the dynamics of a set of technological innovation indicators. For this purpose, we design and develop a software system for assessing unfolding trends in such indicators. In contrast with conventional knowledge-based design, our approach is biologically-inspired and based on self-organization of information. This means that a functional structure, called track, appears and stays spontaneous at runtime when local dynamism in data occurs. A further prototyping of tracks allows a better distinction of the critical phenomena during unfolding events, with a better assessment of the progressing levels. The proposed mechanism works if structural parameters are correctly tuned for the given historical context. Determining such correct parameters is not a simple task since different indicators may have different dynamics. For this purpose, we adopt an adaptation mechanism based on differential evolution. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach, experimental setting and results.Comment: mail: [email protected]

    Multitemporal mapping of post-fire land cover using multiplatform PRISMA hyperspectral and Sentinel-UAV multispectral data: Insights from case studies in Portugal and Italy

    Get PDF
    Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth

    Comparison of precipitated calcium carbonate/polylactic acid and halloysite/polylactic acid nanocomposites

    Get PDF
    PLA nanocomposites with stearate coated precipitated calcium carbonate (PCC) and halloysite natural nanotubes (HNT) were prepared by melt extrusion. The crystallization behavior, mechanical properties, thermal dynamical mechanical analysis (DMTA), and the morphology of the PCC/PLA, HNT/PLA, and HNT/PCC/PLA composites were discussed. Compared to halloysite nanotubes, PCC nanoparticles showed a better nucleating effect, which decreased both the glass transition and cold crystallization temperatures. The tensile performance of PLA composites showed that the addition of inorganic nanofillers increased Young’s modulus but decreased tensile strength. More interestingly, PLA composites with PCC particles exhibited an effectively increased elongation at break with respect to pure PLA, while HNT/PLA showed a decreased ultimate deformation of composites. DMTA results indicated that PLA composites had a similar storage modulus at temperatures below the glass transition and the addition of nanofillers into PLA caused to shift to lower temperatures by about 3°C. The morphological analysis of fractures surface of PLA nanocomposites showed good dispersion of nanofillers, formation of microvoids, and larger plastic deformation of the PLA matrix when the PCC particles were added, while a strong aggregation was noticed in composites with HNT nanofillers, which has been attributed to a nonoptimal surface coating

    Applying infrared thermography to soil surface temperature monitoring: Case study of a high-resolution 48 h survey in a vineyard (Anadia, Portugal)

    Get PDF
    The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications

    Electron-phonon interaction at the Be(0001) surface

    Full text link
    We present a first principle study of the electron-phonon (e-p) interaction at the Be(0001) surface. The real and imaginary part of the e-p self energy are calculated for the surface state in the binding energy range from the Γˉ\bar{\Gamma} point to the Fermi level. Our calculation shows an overall good agreement with several photoemission data measured at high and low temperatures. Additionally, we show that the energy derivative of real part of the self-energy presents a strong temperature and energy variation close to EFE_{F}, making it difficult to measure its value just at EFE_{F}.Comment: Accepted in Phys. Rev. Lett., 5 figure

    High Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Are Associated with a Higher Risk of Hemodialysis Vascular Access Failure

    Get PDF
    Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. All patients who underwent the procedure of the creation of a first native AVF for hemodialysis from January 2019 to December 2020 were considered eligible to be part of this study. Reinterventions for AVF malfunctioning were registered and the population was subdivided into two groups with respect to AVF malfunctioning. ROC curves were obtained to find the appropriate cut-off values for the NLR and PLR. A multivariate analysis was used to identify the independent predictors for an AVF malfunction. Kaplan–Meier curves were used to evaluate the AVF patency rates. A total of 178 patients were enrolled in the study, of them 70% (n = 121) were male. The mean age was 67.5 ± 12 years. Reinterventions for AVF malfunctioning were performed on 102 patients (57.3%). An NLR > 4.21 and a PLR > 208.8 was selected as the cut-off for AVF malfunctioning. The study population was divided into two groups depending on the NLR and PLR values of the individual. For the NLR < 4.21 group, the AVF patency rates were 90.7%, 85.3%, and 84% at the 3-, 6-, and 12-month follow-up, respectively, and 77.5%, 65.8%, and 39.3% at 3, 6, and 12 months for the NLR > 4.21 group, respectively (p < 0.0001). For the PLR < 208.8 group, the patency rates were 85.6%, 76.7%, and 67.7% at the 3-, 6-, and 12-month follow-up. For the PLR > 208.28 group, the patency rates were 80.8%, 71.2%, and 50.7% for the 3-, 6-, and 12-month follow-up, respectively (p = 0.014). The multivariate analysis highlighted that diabetes mellitus, the neutrophil count, the lymphocyte count, and the NLR were independent risk factors for an AVF failure. In our experience, the NLR and PLR are useful markers for the stratification of vascular access failure in hemodialysis patients. The inexpensive nature and ready availability of the values of these biomarkers are two points of strength for everyday clinical practice

    Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions

    Get PDF
    The rotational variance dependence of diffusion tensor imaging (DTI) derived parameters on the number of diffusion weighting directions (N) has been investigated by several Monte Carlo simulation studies. However, the dependence of fractional anisotropy (FA) and mean diffusivity (MD) maps on N, in terms of accuracy and contrast between different anatomical structures, has not been assessed in detail. This experimental study further investigated in vivo the effect of the number of diffusion weighting directions on DTI maps of FA and MD. Human brain FA and MD maps of six healthy subjects were acquired at 1.5T with varying N (6, 11, 19, 27, 55). Then, FA and MD mean values in high (FAH, MDH) and low (FAL, MDL) anisotropy segmented brain regions were measured. Moreover, the contrast-to-signal variance ratio (CVRFA, CVRMD) between the main white matter and the surrounding regions was calculated. Analysis of variance showed that FAL, FAH and CVRFA significantly (p 0.05) depend on N. Unlike MD values, FA values significantly vary with N. It is noteworthy that the observed variation is opposite in low and high anisotropic regions. In clinical studies, the effect of N may represent a confounding variable for anisotropy measurements and the employment of DTI acquisition schemes with high N (> 20) allows an increased CVR and a better visualization of white matter structures in FA maps

    PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms

    Get PDF
    Polyhydroxyalkanoates (PHAs) are a family of biopolyesters produced by many bacteria as intracellular storage carbon and energy source. Poly-β-hydroxybutyrate (PHB) is probably the most common type of PHA. It is biodegradable and renewable, with relevant thermoplastic properties along with adjustable thermal and mechanical properties. The thermoplastic properties of PHB and its biodegradability make it a potential alternative to petroleum-based plastics. Several microorganisms growing in the dark and/or in the light produce PHB. The polymer is mainly accumulated in the cytoplasm of cells when microorganisms are growing under conditions of stress. If purple non-sulfur photosynthetic bacteria (PNSB) are grown under nitrogen starvation conditions, a photoevolution of molecular hydrogen occurs as well. The PHB amount increases when carbon and energy sources are in excess, but the growth is limited, for example, by the lack of a nitrogen, phosphorous or sulfur source. This work deals the possibility of producing PHAs by photosynthetic microorganisms belonging to cyanobacteria and PNSB. Different culture broths, with and without organic carbon sources, were investigated to maximize PHA production by photosynthetic microorganisms. An unbalanced agro-industrial wastewater has been also investigated in the present study. It concerns the olive mill wastewater (OMW) containing significant reusable carbon fractions suitable for an eco-efficient valorization by feeding photosynthetic processes. The maximum PHA concentration in a cyanobacterium drybiomass was 317 mg/L, when growing cells in a medium with a low content of acetic acid (LAC). In PNSB drybiomass the maximum PHB content was 215 mg/L, when growing PNSB in a synthetic medium. A simultaneous H2 co-production (1,295 mL/L of culture) was cumulated as well, at the end of the process
    • …
    corecore