57 research outputs found

    Hydrogen Peroxide in the Troposphere

    Get PDF
    Uloga vodikova peroksida (H2O2) u atmosferskoj kemiji i njegov doprinos u nastanku slobodnih radikala počeli su se proučavati tek posljednjih nekoliko desetljeća. Fotokemijskim reakcijama s ozonom i H2O2 nastaju oksidansi (slobodni radikali) koji mogu oksidirati biomolekule unutar stanica te dovesti do smrti stanica i ozljeda tkiva. Zbog toga se slobodni radikali smatraju uzrokom više od sto bolesti. H2O2 smatra se boljim indikatorom za atmosferski oksidacijski kapacitet od ozona. U atmosferi može biti prisutan u plinovitoj i tekućoj fazi te pokazuje tipične dnevne i sezonske varijacije. Me|utim, zbog skupe i slo`ene opreme, mjerenja H2O2 su rijetka i ograničena na samo nekoliko mjesta u svijetu. Mjerenja u slojevima leda na Grenlandu pokazala su da koncentracije H2O2 rastu posljednjih 200 godina. Značajan porast primijećen je upravo posljednjih dvaju desetljeća, a procjene pokazuju da će i dalje rasti zbog smanjene emisije sumporova dioksida. Mjerenja H2O2 u Hrvatskoj do sada još nisu bila provedena te će uporedo s već postojećim dugogodišnjim rezultatima mjerenja ozona i dušikovih oksida dati uvid u stanje i utjecaj na oksidativni stres.The past few decades saw a rising interest in the role of hydrogen peroxide (H2O2) in atmospheric chemistry and its contribution to the formation of free radicals. Free radicals (oxidants) are formed by photochemical reactions between ozone and H2O2. Free radicals formed within cells can oxidise biomolecules, and this may lead to cell death and tissue injury. For this reason, free radicals are believed to cause more than 100 diseases. H2O2 has been suggested as a better indicator of atmospheric oxidation capacity than ozone. Atmospheric H2O2 can appear in the gas phase or in the aqueous phase. It shows typical diurnal and seasonal variations. However, measurements of H2O2 with expensive and sophisticated equipment are rare and limited to but a few sites in the world. Measurements in Greenland ice cores showed that H2O2 concentrations increased over the last 200 years and most of the increase has occurred over the last 20 years. Evaluations show that concentrations will still rise as a result of decreasing SO2 emission. H2O2 measurements have not been carried out in Croatia until now, and, accompanied by the existing longterm measurements of ozone and nitrogen oxides, they will provide an idea of the oxidative capacity of the atmosphere and its influence on oxidative stress

    SULFUR AND HALOGEN CHEMISTRY OF THE STRATOSPHERE AND OF VOLCANIC ERUPTION PLUMES.

    No full text
    The major eruption of Volcan de Fuego caused an enhancement of 1. 6 multiplied by 10**9 kg of SO//4** minus in the stratosphere 6 months after the eruption. Measurable changes in nitric acid vapor and particulate chloride were not observed. Subsequent data suggests that HCl was not injected into the stratosphere. The first simulataneous measurements of halogen and sulfur content of gases and particles in explosive eruption plumes is reported. The average percents of elements in particles were sulfur, 2. 5 plus or minus 2. 1; chlorine, 18 plus or minus 12; and fluorine, 38 plus or minus 29. The average molecular ratio of HCl/SO//2 and HCl/HF were 0. 41 plus or minus 0. 26 and 14 plus or minus 12 in the Guatemalan eruption plumes
    corecore