21 research outputs found

    PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis

    No full text
    FGF21 is a hormone produced in liver and fat that dramatically improves peripheral insulin sensitivity and lipid metabolism. We show here that obese mice with genetically reduced levels of a key hepatic transcriptional coactivator, PGC-1α, have improved whole-body insulin sensitivity with increased levels of hepatic and circulating FGF21. Gain- and loss-of-function studies in primary mouse hepatocytes show that hepatic FGF21 levels are regulated by the expression of PGC-1α. Importantly, PGC-1α-mediated reduction of FGF21 expression is dependent on Rev-Erbα and the expression of ALAS-1. ALAS-1 is a PGC-1α target gene and the rate-limiting enzyme in the synthesis of heme, a ligand for Rev-Erbα. Modulation of intracellular heme levels mimics the effect of PGC-1α on FGF21 expression, and inhibition of heme biosynthesis completely abrogates the down-regulation of FGF21 in response to PGC-1α. Thus, PGC-1α can impact hepatic and systemic metabolism by regulating the levels of a nuclear receptor ligand

    Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase

    No full text
    PGC-1α is a transcriptional coactivator that powerfully regulates many pathways linked to energy homeostasis. Specifically, PGC-1α controls mitochondrial biogenesis in most tissues but also initiates important tissue-specific functions, including fiber type switching in skeletal muscle and gluconeogenesis and fatty acid oxidation in the liver. We show here that S6 kinase, activated in the liver upon feeding, can phosphorylate PGC-1α directly on two sites within its arginine/serine-rich (RS) domain. This phosphorylation significantly attenuates the ability of PGC-1α to turn on genes of gluconeogenesis in cultured hepatocytes and in vivo, while leaving the functions of PGC-1α as an activator of mitochondrial and fatty acid oxidation genes completely intact. These phosphorylations interfere with the ability of PGC-1α to bind to HNF4α, a transcription factor required for gluconeogenesis, while leaving undisturbed the interactions of PGC-1α with ERRα and PPARα, factors important for mitochondrial biogenesis and fatty acid oxidation. These data illustrate that S6 kinase can modify PGC-1α and thus allow molecular dissection of its functions, providing metabolic flexibility needed for dietary adaptation

    Development of insulin resistance in mice lacking PGC-1α in adipose tissues

    No full text
    Reduced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression and mitochondrial dysfunction in adipose tissue have been associated with obesity and insulin resistance. Whether this association is causally involved in the development of insulin resistance or is only a consequence of this condition has not been clearly determined. Here we studied the effects of adipose-specific deficiency of PGC-1α on systemic glucose homeostasis. Loss of PGC-1α in white fat resulted in reduced expression of the thermogenic and mitochondrial genes in mice housed at ambient temperature, whereas gene expression patterns in brown fat were not altered. When challenged with a high-fat diet, insulin resistance was observed in the mutant mice, characterized by reduced suppression of hepatic glucose output. Resistance to insulin was also associated with an increase in circulating lipids, along with a decrease in the expression of genes regulating lipid metabolism and fatty acid uptake in adipose tissues. Taken together, these data demonstrate a critical role for adipose PGC-1α in the regulation of glucose homeostasis and a potentially causal involvement in the development of insulin resistance

    Noncanonical agonist PPAR gamma ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy

    No full text
    The peroxisome-proliferator receptor-gamma (PPAR gamma) is expressed in multiple cancer types. Recently, our group has shown that PPAR gamma is phosphorylated on serine 273 (S273), which selectively modulates the transcriptional program controlled by this protein. PPAR gamma ligands, including thiazolidinediones (TZDs), block S273 phosphorylation. This activity is chemically separable from the canonical activation of the receptor by agonist ligands and, importantly, these noncanonical agonist ligands do not cause some of the known side effects of TZDs. Here, we show that phosphorylation of S273 of PPAR gamma occurs in cancer cells on exposure to DNA damaging agents. Blocking this phosphorylation genetically or pharmacologically increases accumulation of DNA damage, resulting in apoptotic cell death. A genetic signature of PPAR gamma phosphorylation is associated with worse outcomes in response to chemotherapy in human patients. Non-canonical agonist ligands sensitize lung cancer xenografts and genetically induced lung tumors to carboplatin therapy. Moreover, inhibition of this phosphorylation results in deregulation of p53 signaling, and biochemical studies show that PPAR gamma physically interacts with p53 in a manner dependent on S273 phosphorylation. These data implicate a role for PPAR gamma in modifying the p53 response to cytotoxic therapy, which can be modulated for therapeutic gain using these compounds
    corecore