16 research outputs found

    Effect of glycerol content and pH value of film-forming solution on the functional properties of protein-based edible films

    Get PDF
    The work is concerned with the effects of glycerol content and pH value of film forming solution on the functional properties of protein-based films. The films were produced of chicken breast proteins, dissolved under either acidic (pH 3) or alkaline (pH 11) conditions, with different concentrations of glycerol (35%, 50% and 65% w/w of protein content). Glycerol content affected significantly mechanical properties, water vapor permeability, color at pH 3 and film solubility (p<0.05). The pH value had significant influence on light transmission, color, transparency and film solubility (p<0.05). Considering the results of mechanical properties and film solubility, the obtained films are in the acceptable range for the use as a packaging material. It was estimated that water vapor permeability, color, light transmission and transparency need to be improved for the application

    Improvement of Water Vapor Barrier Properties of Chitosan-Collagen Laminated Casings using Beeswax

    Get PDF
    Collagen casings are commercially used in sausage production. In this paper, collagen film that is used for sausage casings was laminated with chitosan film to produce barrier casing film. Chitosan coating was prepared by dissolving chitosan powder in 1% acetic acid. After dissolving chitosan, caraway essential oil, wetting agent Tween 20 and different amounts of beeswax, from 0 to 25 g were added to the solution. The solution was coated on collagen film surface in three layers, using a sponge brush to make laminated films. Films were air dried at temperature t = 23 Ā°C Ā± 2 Ā°C. Uncoated collagen film was used as reference. Film thickness, water vapor barrier properties and FTIR spectra were determined. With growing amount of beeswax added to the chitosan layer, film thickness grew from 112 Āµm for laminated film with 5 g of beeswax to 225 Āµm for film with 25 g of beeswax, compared to 83 Āµm for collagen film. Water vapor barrier properties improved with growing amount of beeswax in chitosan layer, ranging from 130.71 g/m224h for laminated film with added 5 g of beeswax to 66.96 g/m224h for the film with 25 g of beeswax, compared to 290.64 g/m224h for collagen film. Addition of beeswax showed great potential in lowering water vapor permeability of laminated collagen-chitosan film. FTIR spectra could be used to determine quantitative law dependency between added amount of beeswax and spectra absorption values,as well as to prove compactness of chitosan-beeswax layer

    Structural characterisation of starch based edible films with essential oil addition

    Get PDF
    Present study investigated structure of starch based edible films with essential oil addition. Films were obtained from water solutions containing gelatinized modified starch, polyol, guar-xantan gum modified mixture and essential oil by casting it on a Petri dish and evaporating at room temperature for 72h. Both, glycerol and guar-xantan modified mixture, had role to improve film flexibility and enable better film folding and handling. Two sample groups were obtained: starch based edible films with black cumin oil addition and starch based edible films with black pepper oil addition. Both essential oils were added in three different concentrations. Starch based edible film without essential oil addition was used as blank shot. Structural properties were determined by analyzing spectra obtained by FT-IR Spectrometer in the spectral range of 4000ā€“400 cmāˆ’1 with a 4.0 cmāˆ’1 resolution. Software Omnic 8.1. and TQ Analyst were used to operate the FTIR spectrometer, collect and present all the data. Results pointed to quantitative law dependency between added amount of essential oils and spectra absorption values for both sample groups and FTIR spectra were used to calculate coefficient of correlation

    Antioxidative activity of chitosan and chitosan based biopolymer film

    Get PDF
    Growing consumer demand for the food without chemical preservatives focused significant extent of research in the direction of finding natural compounds that can be used in food preservation. In this context, natural substances with strong antimicrobial and antioxidant properties, like essential oils, as well as natural biopolymers, particularly draw attention. Natural biopolymers can serve as carriers of the active components, such as essential oils in order of their sustained release to the food during storage, and may themselves exhibit activity in protecting foods from oxidation and/or microbial spoilage. Chitosan has been extensively studied as semi-natural polymer with expressed bioactive properties. While antimicrobial activity of chitosan solution in different acids has been confirmed towards different bacteria, yeasts and moulds, reports concerning intensity, underlying machanism and different factors afecting antioxidant activity of chitosan vary through the available literature. This paper presents a review in the field of antioxidative activity of chitosan with different properties, as well as chitosan based biopolymer films in order to clarify this aspect of chitosan bioactivity and confront different reports found in the literature

    Comparison of life cycle assessment for different volume polypropylene jars

    No full text
    When deciding what packaging is the most appropriate for a product there are many factors to be considered. One of them is the impact of the packaging on environment. In this work, life cycle inventory and life cycle assessment of two different volume packagings were compared. The data were collected on the types and amounts of materials and energy consumption in the process of packaging and distribution of hand cream packed in polypropylene jars of 200 and 350 mL. Life cycle inventory (LCI) and life cycle impact assessment (LCA) were calculated. It was found that the total mass flow was higher for the jars of 350 mL. After analyzing individual flows, it was found that in both cycles (polypropylene jars of 200 and 350 mL),the consumption of fresh water was a dominant flow. This fresh water flow is mostly (95%) consumed in the injection molding process of manufacturing jars from polypropylene granules. The LCA analysis showed no significant difference in global warming potential between different volume jars. The process that mostly affected global warming was the production of polypropylene jars from polypropylene granules by injection molding for both jar volumes. Judging by the global warming potential, there is no difference of the environmental impact between investigated jars, but considering the mass flow and water consumption, more environmental friendly were the 200 mL jars

    Determination of carbonyl compounds (acetaldehyde and formaldehyde) in polyethylene terephthalate containers designated for water conservation

    No full text
    Polyethylene terephthalate (PET) has in the last several years become the main packaging material for many food products, particularly carbonated beverages and bottled water, as well as for products of chemical industry (packaging of various hygiene maintenance agents, pesticides, solvents, etc.). The strength and permeability properties of PET are very good for packaging of beverages, its resistance to chemicals is high and it has a high degree of transparency. Acetaldehyde and formaldehyde are formed during the thermoforming of PET containers. After cooling, acetaldehyde and formaldehyde remain trapped in the walls of a PET bottle and may migrate into the water after filling and storage. Since there are no migration tests in Serbia prescribed for the determination of acetaldehyde and formaldehyde, the purpose of the paper is to test the quantitative contents of carbonyl compounds (acetaldehyde and formaldehyde) in PET containers of different volumes, made by various manufacturers of bottled mineral carbonated and noncarbonated water, and exposed to different temperatures. In this study, the migration of acetaldehyde and formaldehyde from PET bottles into mineral carbonated and noncarbonated water was determined by high performance liquid chromatography. Taking into consideration that formaldehyde and acetaldehyde have no UV active or fluorescent group, the chromatography shall be preceded by derivatization in a closed system (due to a low boiling point of acetaldehyde and formaldehyde), which shall transform carbonyl compounds into UV active compounds

    EDIBLE FILMS AND COATINGS -SOURCES, PROPERTIES AND APPLICATION

    No full text
    ABSTRACT: In order to extend product shelf life while preserving the quality scientific attention focused to biopolymers research that are base for edible films and coatings production. Another major advantage of this kind of food packaging is their eco-friendly status because biopolymers do not cause environmental problems as packaging materials derived from non-renewable energy sources do. Objective of this work was to review recently studied edible films and coatings -their sources, properties and possible application. As sources for edible biopolymers were highlighted polysaccharides, proteins and lipids. The most characteristic subgroups from each large group of compounds were selected and described regarding possible physical and mechanical protection; migration, permeation, and barrier functions. The most important biopolymers characteristic is possibility to act as active substance carriers and to provide controlled release. In order to achieve active packaging functions emulsifiers, antioxidants and antimicrobial agents can also be incorporated into film-forming solutions in order to protect food products from oxidation and microbial spoilage, resulting in quality improvement and enhanced safety. The specific application where edible films and coatings have potential to replace some traditional polymer packaging are explained. It can be concluded that edible films and coatings must be chosen for food packaging purpose according to specific applications, the types of food products, and the major mechanisms of quality deterioration

    Applying and influence of polymer materials for packaging dairy beverages

    No full text
    Functional food is positioned above the traditional, with the potential to improve human health. Thanks to very good physico-mechanical and barrier properties polymers became very popular in food industry as a packaging materials. Wild range of fermented dairy products could be packed in this packaging materials according to theirā€™s inertness as well. Functional milk beverage was obtained from milk with 0,9% milk fat content by applying 10% v/v of kombuchaā€™s inoculum cultivated on a black tea sweetened with sucrose. The beverage was packed in a different packaging materials: polyamid-polyethylen (PA/PE) coextruded foil bags and polyprophylen (PP) cups closed with aluminium (Al) foil lids under atmospheric conditions (ATM). Beverages were storaged for 15 days at 4Ā°C. The quality of kombucha inoculum, milk and obtained kombucha fermented milk beverage were analysed. Characterization of the packaging materials was done by investigating physico-mechanical, barrier and structural properties. The composition and changes in the headspace atmosphere, after production and during the storage, were analysed. The influence of packaging material properties and packaging conditions on the biochemical transformations of the milkā€™s components (the content of: lactose, L-lactic acid, D-galactose, ethanol, B1 and B2 vitamins) influenced by kombucha starter were analysed as well. On the bases of the obtained results of characterisation of packaging materials, it can be concluded that PA/PE and PP materials are proper to be used for analysed beverageā€™s packaging. Also, there is no significant difference in content of components which were quantified, between analysed materials in correlation with the packed fermented milk beverage. [Projekat Ministarstva nauke Republike Srbije, br. III-46009

    Influence of storage period on properties of biopolymer packaging materials and pouches

    No full text
    Bilayer biodegradable films based on pumpkin oil cake (PuOC) and zein, as well as pouches made from these materials, were prepared, and the changes of their mechanical, physicochemical and barrier properties were analyzed during four weeks of storage. Heat seal quality of formed pouches and composition of the gas atmosphere in the pouches were also monitored. The results showed that the bilayer film had a thickness of 300 Ā± 10 (Ī¼m), and no its changes were observed during the storage time. The tensile strength of the tested film increased slightly in the third week, but the elongation at break showed a decreasing trend during the whole storage period. The decreases in the moisture content, total soluble matter and swelling of the obtained film, were also observed. After one month of storage, the O2 transmission rate of tested films, increased from 27 to 64 (ml/m2 24h 1 bar), and the CO2 gas transmission rate from 147 to 188 (ml/m2 24h 1 bar). The heat seal strength of the PuOC/Zein pouches decreased during the whole storage period. The percentage of O2 in PuOC/Zein pouches increased up to 7 times during the storage period; however, the percentage of CO2 decreased up to 18 times already after one week, and then remained stable in the rest of the storage period. These results are, to a smaller extent, due to the gas transmission rate through the material, especially for CO2 , and to a greater extent, due to the low heat seal strength, which decreased through the storage period, and probably influenced the content of the gases in the pouches.[Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 46010

    Influence of protective characteristics of packaging material on packed dried fruits

    No full text
    Dried fruits are very delicate to biochemical changes during storage, due to low water content, as well as low aw value. The shelf life of these products depends on aw value. Materials for dry fruits packaging are necessary to have appropriate barrier characteristics for water, oxygen, nitrogen and carbon dioxide molecules, as well as for electromagnetic rays, especially those with low wavelengths in UV region. During storage of packed dry fruits, qualitative changes, influenced by different packaging materials, may occur. The results of tested characteristics of different packaging materials, combination and their barrier features, as well as the qualitative changes of packaged dried apples are presented in this paper. The qualitative changes of color and sensory characteristics of packaged dried apples point out to influence of the type, combination as well as the barrier features of used packaging materials.
    corecore