3 research outputs found

    A fast radio burst localized at detection to a galactic disk using very long baseline interferometry

    Full text link
    Fast radio bursts (FRBs) are millisecond-duration, luminous radio transients of extragalactic origin. These events have been used to trace the baryonic structure of the Universe using their dispersion measure (DM) assuming that the contribution from host galaxies can be reliably estimated. However, contributions from the immediate environment of an FRB may dominate the observed DM, thus making redshift estimates challenging without a robust host galaxy association. Furthermore, while at least one Galactic burst has been associated with a magnetar, other localized FRBs argue against magnetars as the sole progenitor model. Precise localization within the host galaxy can discriminate between progenitor models, a major goal of the field. Until now, localizations on this spatial scale have only been carried out in follow-up observations of repeating sources. Here we demonstrate the localization of FRB 20210603A with very long baseline interferometry (VLBI) on two baselines, using data collected only at the time of detection. We localize the burst to SDSS J004105.82+211331.9, an edge-on galaxy at z≈0.177z\approx 0.177, and detect recent star formation in the kiloparsec-scale vicinity of the burst. The edge-on inclination of the host galaxy allows for a unique comparison between the line of sight towards the FRB and lines of sight towards known Galactic pulsars. The DM, Faraday rotation measure (RM), and scattering suggest a progenitor coincident with the host galactic plane, strengthening the link between the environment of FRB 20210603A and the disk of its host galaxy. Single-pulse VLBI localizations of FRBs to within their host galaxies, following the one presented here, will further constrain the origins and host environments of one-off FRBs.Comment: 40 pages, 13 figures, submitted. Fixed typo in abstrac

    CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources

    Full text link
    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events co-located on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from ∼\sim220 pc cm−3^{-3} to ∼\sim1700 pc cm−3^{-3}, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction and find that it tends to an equilibrium of 2.6−2.6+2.92.6_{-2.6}^{+2.9}% over our exposure thus far. We also report on 14 more sources which are promising repeating FRB candidates and which merit follow-up observations for confirmation.Comment: Submitted to ApJ. Comments are welcome and follow-up observations are encouraged

    Polarization properties of the 128 non-repeating fast radio bursts from the first CHIME/FRB baseband catalog

    No full text
    International audienceWe present a 400-800 MHz polarimetric analysis of 128 non-repeating fast radio bursts (FRBs) from the first CHIME/FRB baseband catalog, increasing the total number of FRB sources with polarization properties by a factor of ~3. Of the 128 sources, 89 FRBs have >6σ{\sigma} linearly polarized detections, 29 FRBs fall below this significance threshold and are deemed linearly unpolarized, and for 10 FRBs the polarization data are contaminated by instrumental polarization. For the 89 polarized FRBs, we find Faraday rotation measure (RM) amplitudes, after subtracting approximate Milky Way contributions, in the range 0.5-1160 rad m−2^{-2} with a median of 53.8 rad m−2^{-2}. Most non-repeating FRBs in our sample have RMs consistent with Milky Way-like host galaxies and their linear polarization fractions range from ≤{\leq}10% to 100% with a median of 63%. The non-repeater RMs and linear polarization fraction distributions are consistent with those of repeating FRBs. We see marginal evidence that non-repeating FRBs have more constraining lower limits than repeating FRBs for the host electron-density-weighted line-of-sight magnetic field strength. We classify the non-repeating FRB polarization position angle (PA) profiles into four archetypes: (i) single component with constant PA (57% of the sample), (ii) single component with variable PA (10%), (iii) multiple components with a single constant PA (22%), and (iv) multiple components with different or variable PAs (11%). We see no evidence for population-wide frequency-dependent depolarization and, therefore, the spread in the distribution of fractional linear polarization is likely intrinsic to the FRB emission mechanism
    corecore