59 research outputs found

    A new vibrational level of the H2+_2^+ molecular ion

    Get PDF
    A new state of the H2+_2^+ molecular ion with binding energy of 1.09×10−9\times10^{-9} a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a=750±5a=750\pm 5 Bohr radii.Comment: 6 pages + 3 figure

    Testing Non-local Nucleon-Nucleon Interactions in the Four-Nucleon Systems

    Full text link
    The Faddeev-Yakubovski equations are solved in configuration space for the α% \alpha-particle and n-3^3H continuum states. We test the ability of nonlocal nucleon-nucleon interaction models to describe 3N and 4N systems.Comment: 16 pages, 6 figure

    Benchmark calculation of n-3H and p-3He scattering

    Full text link
    The n-3H and p-3He elastic phase-shifts below the trinucleon disintegration thresholds are calculated by solving the 4-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement between the three different theoretical methods. We also compare the theoretical predictions with the available experimental data, confirming the large underprediction of the p-3He analyzing power.Comment: 18 pages, 9 figure

    Parity violation in low energy neutron deuteron scattering

    Get PDF
    Parity violating effects for low energy elastic neutron deuteron scattering are calculated for DDH and EFT-type of weak potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The results of relation between physical observables and low energy constants can be used to fix low energy constants from experiments. Potential model dependencies of parity violating effects are discussed.Comment: version accepted for publication in Phys. Rev.

    Time Reversal Invariance Violation in Neutron Deuteron Scattering

    Get PDF
    Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed

    Three-neutron resonance trajectories for realistic interaction models

    Full text link
    Three-neutron resonances are investigated using realistic nucleon-nucleon interaction models. The resonance pole trajectories are explored by first adding an additional interaction to artificially bind the three-neutron system and then gradually removing it. The pole positions for the three-neutron states up to J=5/2 are localized in the third energy quadrant-Im (E)<=0, Re (E)<=0-well before the additional interaction is removed. Our study shows that realistic nucleon-nucleon interaction models exclude any possible experimental signature of three-neutron resonances.Comment: 13 pages ; 8 figs ; 5 table

    Description of 4^{4}He tetramer bound and scattering states

    Get PDF
    Faddeev-Yakubovski equations are solved numerically for 4He tetramer and trimer states using realistic helium-helium interaction models. We describe the properties of ground and excited states, and we discuss with a special emphasis the 4He-4He3 low energy scattering

    Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei

    Get PDF
    We discuss the cross section formula both for massless and massive neutrinos on stable and radioactive nuclei. The latter could be of interest for the detection of cosmological neutrinos whose observation is one of the main challenges of modern cosmology. We analyze the signal to background ratio as a function of the ratio of the neutrino mass over the detector resolution and show that an energy resolution less than 0.5 eV would be required for sub-eV neutrino masses, independently of the gravitational neutrino clustering. Finally we mention the non-resonant character of neutrino capture on radioactive nuclei.Comment: 5 pages, 2 figure
    • 

    corecore