7 research outputs found

    Familial phenotype differences in PKD1111See Editorial, p. 344.

    Get PDF
    Familial phenotype differences in PKD1.BackgroundMutations within the PKD1 gene are responsible for the most common and most severe form of autosomal dominant polycystic kidney disease (ADPKD). Although it is known that there is a wide range of disease severity within PKD1 families, it is uncertain whether differences in clinical severity also occur among PKD1 families.MethodsTen large South Wales ADPKD families with at least 12 affected members were included in the study. From affected members, clinical information was obtained, including survival data and the presence of ADPKD-associated complications. Family members who were at risk of having inherited ADPKD but were proven to be non-affected were included as controls. Linkage and haplotype analysis were performed with highly polymorphic microsatellite markers closely linked to the PKD1 gene. Survival data were analyzed by the Kaplan–Meier method and the log rank test. Logistic regression analysis was used to test for differences in complication rates between families.ResultsHaplotype analysis revealed that each family had PKD1-linked disease with a unique disease-associated haplotype. Interfamily differences were observed in overall survival (P = 0.0004), renal survival (P = 0.0001), hypertension prevalence (P = 0.013), and hernia (P = 0.048). Individuals with hypertension had significantly worse overall (P = 0.0085) and renal (P = 0.03) survival compared with those without hypertension. No statistically significant differences in the prevalence of hypertension and hernia were observed among controls.ConclusionWe conclude that phenotype differences exist between PKD1 families, which, on the basis of having unique disease-associated haplotypes, are likely to be associated with a heterogeneous range of underlying PKD1 mutations

    An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5′ untranslated region of the PAFAH1B1 (LIS1) gene

    No full text
    A 130 base pair (bp) insertion (g.-8delCins130) into the 5′ untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6 ), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT

    An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the <it>PAFAH1B1 </it>(LIS1) gene

    No full text
    Abstract A 130 base pair (bp) insertion (g.-8delCins130) into the 5' untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT.</p

    Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease

    No full text
    The molecular analysis of a specific CAG repeat sequence in the Huntington's disease gene in 440 Huntington's disease patients and 360 normal controls reveals a range of 30−70 repeats in affected individuals and 9−34 in normals. We find significant negative correlations between the number of repeats on the HD chromosome and age at onset, regardless of sex of the transmitting parent, and between the number of repeats on the normal paternal allele and age at onset in individuals with maternally transmitted disease. This effect of the normal paternal allele may account for the weaker age at onset correlation between affected sib pairs with disease of maternal as opposed to paternal origin and suggests that normal gene function varies because of the size of the repeat in the normal range and a sex−specific modifying effect

    Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease

    No full text
    The molecular analysis of a specific CAG repeat sequence in the Huntington's disease gene in 440 Huntington's disease patients and 360 normal controls reveals a range of 30−70 repeats in affected individuals and 9−34 in normals. We find significant negative correlations between the number of repeats on the HD chromosome and age at onset, regardless of sex of the transmitting parent, and between the number of repeats on the normal paternal allele and age at onset in individuals with maternally transmitted disease. This effect of the normal paternal allele may account for the weaker age at onset correlation between affected sib pairs with disease of maternal as opposed to paternal origin and suggests that normal gene function varies because of the size of the repeat in the normal range and a sex−specific modifying effect

    Early onset seizures and Rett-like features associated with mutations in CDKL5

    No full text
    Mutations in the CDKL5 gene (also known as STK9) have recently been shown to cause early onset epilepsy and severe mental retardation (ISSX or West syndrome). Patients with CDKL5 mutations sometimes also show features similar to those seen in Rett Syndrome (RTT). We have screened the CDKL5 gene in 94 patients with RTT or a RTT-like phenotype who had tested negative for MECP2 mutations (13 classical RTT female subjects, 25 atypical RTT female subjects, 40 RTT-like female and 16 RTT-like male subjects; 33 of the patients had early onset seizures). Novel pathogenic CDKL5 mutations were identified in three girls, two of whom had initially been diagnosed with the early onset seizure variant of RTT and the other with early onset seizures and some features of RTT. In addition, the 33 patients with early seizures were screened for the most common mutations in the ARX gene but none were found. Combining our three new cases with the previously published cases, 13/14 patients with CDKL5 mutations presented with seizures before the age of 3 months.Julie C Evan, Hayley L Archer, James P Colley, Kirstine Ravn, Jytte Bieber Nielsen, Alison Kerr, Elizabeth Williams, John Christodoulou, Jozef Gécz, Philip E Jardine, Michael J Wright, Daniela T Pilz, Lazarus Lazarou,David N Cooper, Julian R Sampson, Rachel Butler, Sharon D Whatley and Angus J Clark

    Two sisters with Rett syndrome and non-identical paternally-derived microdeletions in the MECP2 gene

    Get PDF
    The unique case of two sisters with symptoms of RTT and two quite distinct, novel, and apparently de novo microdeletions of the MECP2 gene is described. One sister possessed an 18 base-pair (bp) deletion (c.1155_1172del18) within the deletion hotspot region of exon 4, whereas the other sister exhibited a 43 bp deletion at a different location in the same exon (c.1448_1461del14+29). Although these lesions occurred on the same paternally-derived X chromosome, this is probably due to chance co-occurrence owing to the relatively high mutation rate of the MECP2 gene rather than to a constitutional mutator phenotype
    corecore