2,804 research outputs found
Quasilinear approach of the cumulative whistler instability in fast solar winds: Constraints of electron temperature anisotropy
Context. Solar outflows are a considerable source of free energy which
accumulates in multiple forms like beaming (or drifting) components and/or
temperature anisotropies. However, kinetic anisotropies of plasma particles do
not grow indefinitely and particle-particle collisions are not efficient enough
to explain the observed limits of these anisotropies. Instead, the
self-generated wave instabilities can efficiently act to constrain kinetic
anisotropies, but the existing approaches are simplified and do not provide
satisfactory explanations. Thus, small deviations from isotropy shown by the
electron temperature () in fast solar winds are not explained yet.
Aims. This paper provides an advanced quasilinear description of the whistler
instability driven by the anisotropic electrons in conditions typical for the
fast solar winds. The enhanced whistler-like fluctuations may constrain the
upper limits of temperature anisotropy ,
where are defined with respect to the magnetic field
direction.
Methods. Studied are the self-generated whistler instabilities, cumulatively
driven by the temperature anisotropy and the relative (counter)drift of the
electron populations, e.g., core and halo electrons. Recent studies have shown
that quasi-stable states are not bounded by the linear instability thresholds
but an extended quasilinear approach is necessary to describe them in this
case.
Results. Marginal conditions of stability are obtained from a quasilinear
theory of the cumulative whistler instability, and approach the quasi-stable
states of electron populations reported by the observations.The instability
saturation is determined by the relaxation of both the temperature anisotropy
and the relative drift of electron populations.Comment: Accepted for publication in A&
Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations
In 1922, Cartan introduced in differential geometry, besides the Riemannian
curvature, the new concept of torsion. He visualized a homogeneous and
isotropic distribution of torsion in three dimensions (3d) by the "helical
staircase", which he constructed by starting from a 3d Euclidean space and by
defining a new connection via helical motions. We describe this geometric
procedure in detail and define the corresponding connection and the torsion.
The interdisciplinary nature of this subject is already evident from Cartan's
discussion, since he argued - but never proved - that the helical staircase
should correspond to a continuum with constant pressure and constant internal
torque. We discuss where in physics the helical staircase is realized: (i) In
the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d
theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's
case of constant pressure and constant intrinsic torque - and b) in 3d Poincare
gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the
gauge field theory of dislocations of Lazar et al., as we prove for the first
time by arranging a suitable distribution of screw dislocations. Our main
emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure
Electromagnetic cyclotron instabilities in bi-Kappa distributed plasmas : a quasilinear approach
Anisotropic bi-Kappa distributed plasmas, as encountered in the solar wind and planetary magnetospheres,are susceptible to a variety of kinetic instabilities including the cyclotron instabilities driven by an excess ofperpendicular temperature T⊥ > T∥ (where ∥, ⊥ denote directions relative to the mean magnetic field). Theseinstabilities have been extensively investigated in the past, mainly limiting to a linear stability analysis. Abouttheir quasilinear (weakly nonlinear) development some insights have been revealed by numerical simulationsusing PIC and Vlasov solvers. This paper presents a self-consistent analytical approach, which provides forboth the electron and proton cyclotron instabilities an extended picture of the quasilinear time evolution ofthe anisotropic temperatures as well as the wave energy densities
Primjena visoko-temperaturnog i visoko-tlačnog reaktora
A prototype of a high-temperature and high-pressure reactor on oxygen-hydrogen flame used for gravity separation of multiple mineral components mixture is already in its second year of development. This equipment, appliyed in a high temperature range, is able to treat the waste of some industrial technologies, which are of multiple component nature.Već se dvije godine razvija prototip visokotemperaturnog i visokotlačnog reaktora koji koristi plamen kisika i vodika, a primjenjuje se za gravitacijsku separaciju višekomponentnih mineralnih smjesa. Ova oprema, primjenjena u opsegu visokih temperature, omogućit će obradu višekomponentnih otpada nekih industrijskih tehnologija
Primjena visoko-temperaturnog i visoko-tlačnog reaktora
A prototype of a high-temperature and high-pressure reactor on oxygen-hydrogen flame used for gravity separation of multiple mineral components mixture is already in its second year of development. This equipment, appliyed in a high temperature range, is able to treat the waste of some industrial technologies, which are of multiple component nature.Već se dvije godine razvija prototip visokotemperaturnog i visokotlačnog reaktora koji koristi plamen kisika i vodika, a primjenjuje se za gravitacijsku separaciju višekomponentnih mineralnih smjesa. Ova oprema, primjenjena u opsegu visokih temperature, omogućit će obradu višekomponentnih otpada nekih industrijskih tehnologija
- …