4,286 research outputs found

    On the entropy of plasmas described with regularized Îș\kappa-distributions

    Full text link
    In classical thermodynamics the entropy is an extensive quantity, i.e.\ the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for the so-called Îș\kappa-distributions, which describe plasma constituents with power-law velocity distributions. We demonstrate here, by employing the recently introduced {\it regularized Îș\kappa-distributions}, that entropy can be defined as an extensive quantity even for such power-law-like distributions that truncate exponentially.Comment: Preprint accepted for publication in Phys. Rev.

    Quasilinear approach of the cumulative whistler instability in fast solar winds: Constraints of electron temperature anisotropy

    Full text link
    Context. Solar outflows are a considerable source of free energy which accumulates in multiple forms like beaming (or drifting) components and/or temperature anisotropies. However, kinetic anisotropies of plasma particles do not grow indefinitely and particle-particle collisions are not efficient enough to explain the observed limits of these anisotropies. Instead, the self-generated wave instabilities can efficiently act to constrain kinetic anisotropies, but the existing approaches are simplified and do not provide satisfactory explanations. Thus, small deviations from isotropy shown by the electron temperature (TT) in fast solar winds are not explained yet. Aims. This paper provides an advanced quasilinear description of the whistler instability driven by the anisotropic electrons in conditions typical for the fast solar winds. The enhanced whistler-like fluctuations may constrain the upper limits of temperature anisotropy A≡T⊄/T∄>1A \equiv T_\perp /T_\parallel > 1, where ⊄,∄\perp, \parallel are defined with respect to the magnetic field direction. Methods. Studied are the self-generated whistler instabilities, cumulatively driven by the temperature anisotropy and the relative (counter)drift of the electron populations, e.g., core and halo electrons. Recent studies have shown that quasi-stable states are not bounded by the linear instability thresholds but an extended quasilinear approach is necessary to describe them in this case. Results. Marginal conditions of stability are obtained from a quasilinear theory of the cumulative whistler instability, and approach the quasi-stable states of electron populations reported by the observations.The instability saturation is determined by the relaxation of both the temperature anisotropy and the relative drift of electron populations.Comment: Accepted for publication in A&

    Dual Maxwellian-Kappa modelling of the solar wind electrons: new clues on the temperature of Kappa populations

    Full text link
    Context. Recent studies on Kappa distribution functions invoked in space plasma applications have emphasized two alternative approaches which may assume the temperature parameter either dependent or independent of the power-index Îș\kappa. Each of them can obtain justification in different scenarios involving Kappa-distributed plasmas, but direct evidences supporting any of these two alternatives with measurements from laboratory or natural plasmas are not available yet. Aims. This paper aims to provide more facts on this intriguing issue from direct fitting measurements of suprathermal electron populations present in the solar wind, as well as from their destabilizing effects predicted by these two alternating approaches. Methods. Two fitting models are contrasted, namely, the global Kappa and the dual Maxwellian-Kappa models, which are currently invoked in theory and observations. The destabilizing effects of suprathermal electrons are characterized on the basis of a kinetic approach which accounts for the microscopic details of the velocity distribution. Results. In order to be relevant, the model is chosen to accurately reproduce the observed distributions and this is achieved by a dual Maxwellian-Kappa distribution function. A statistical survey indicates a Îș\kappa-dependent temperature of the suprathermal (halo) electrons for any heliocentric distance. Only for this approach the instabilities driven by the temperature anisotropy are found to be systematically stimulated by the abundance of suprathermal populations, i.e., lowering the values of Îș\kappa-index.Comment: Submitted to A&

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure
    • 

    corecore