439 research outputs found

    Electronic theory for superconductivity in Sr2_2RuO4_4: triplet pairing due to spin-fluctuation exchange

    Full text link
    Using a two-dimensional Hubbard Hamiltonian for the three electronic bands crossing the Fermi level in Sr2_2RuO4_4 we calculate the band structure and spin susceptibility χ(q,ω)\chi({\bf q}, \omega) in quantitative agreement with nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) experiments. The susceptibility has two peaks at {\bf Q}i=(2π/3,2π/3)_i = (2\pi/3, 2\pi/3) due to the nesting Fermi surface properties and at {\bf q}i=(0.6π,0)_i = (0.6\pi, 0) due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange theory as in layered cuprates we determine from χ(q,ω)\chi({\bf q}, \omega), electronic dispersions, and Fermi surface topology that superconductivity in Sr2_2RuO4_4 consists of triplet pairing. Combining the Fermi surface topology and the results for χ(q,ω)\chi({\bf q}, \omega) we can exclude s−s- and d−d-wave symmetry for the superconducting order parameter. Furthermore, within our analysis and approximations we find that ff-wave symmetry is slightly favored over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte

    Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr_2RuO_4

    Full text link
    A mechanism leading to the spin-triplet superconductivity is proposed based on the antiferromagnetic spin fluctuation. The effects of anisotropy in spin fluctuation on the Cooper pairing and on the direction of d vector are examined in the one-band Hubbard model with RPA approximation. The gap equations for the anisotropic case are derived and applied to Sr_2RuO_4. It is found that a nesting property of the Fermi surface together with the anisotropy leads to the triplet superconductivity with the d=z(sin{k_x}\pm isin{k_y}), which is consistent with experiments.Comment: 4 pages, 3 eps figures, revte

    Calculation of the Electron Self Energy for Low Nuclear Charge

    Get PDF
    We present a nonperturbative numerical evaluation of the one-photon electron self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly-ionized helium. Resummation and convergence acceleration techniques that reduce the computer time by about three orders of magnitude were employed in the calculation. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 10 pages, RevTeX, 2 figure

    The Cold Big-Bang Cosmology as a Counter-example to Several Anthropic Arguments

    Get PDF
    A general Friedmann big-bang cosmology can be specified by fixing a half-dozen cosmological parameters such as the photon-to-baryon ratio Eta, the cosmological constant Lambda, the curvature scale R, and the amplitude Q of (assumed scale-invariant) primordial density fluctuations. There is currently no established theory as to why these parameters take the particular values we deduce from observations. This has led to proposed `anthropic' explanations for the observed value of each parameter, as the only value capable of generating a universe that can host intelligent life. In this paper, I explicitly show that the requirement that the universe generates sun-like stars with planets does not fix these parameters, by developing a class of cosmologies (based on the classical `cold big-bang' model) in which some or all of the cosmological parameters differ by orders of magnitude from the values they assume in the standard hot big-bang cosmology, without precluding in any obvious way the existence of intelligent life. I also give a careful discussion of the structure and context of anthropic arguments in cosmology, and point out some implications of the cold big-bang model's existence for anthropic arguments concerning specific parameters.Comment: 13 PRD-style pages, 2 postscript figures. Reference 26 corrected. Accepted to Phys. Rev.

    Model Flames in the Boussinesq Limit: The Effects of Feedback

    Get PDF
    We have studied the fully nonlinear behavior of pre-mixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. Key results include the establishment of criterion for when such flames propagate as simple planar flames; elucidation of scaling laws for the effective flame speed; and a study of the stability properties of these flames. The simplicity of some of our scalings results suggests that analytical work may further advance our understandings of buoyant flames.Comment: 11 pages, 14 figures, RevTex, gzipped tar fil

    Electron Self Energy for the K and L Shell at Low Nuclear Charge

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z=1 to 5 is described. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and 2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure

    Ionization Potential of the Helium Atom

    Get PDF
    Ground state ionization potential of the He^4 atom is evaluated to be 5 945 204 221 (42) MHz. Along with lower order contributions, this result includes all effects of the relative orders alpha^4, alpha^3*m_e/m_alpha and alpha^5*ln^2(alpha).Comment: 4 page

    On the Distribution of Haloes, Galaxies and Mass

    Full text link
    The stochasticity in the distribution of dark haloes in the cosmic density field is reflected in the distribution function PV(Nh∣Ύm)P_V(N_h|\delta_m) which gives the probability of finding NhN_h haloes in a volume VV with mass density contrast ÎŽm\delta_m. We study the properties of this function using high-resolution NN-body simulations, and find that PV(Nn∣Ύm)P_V(N_n|\delta_m) is significantly non-Poisson. The ratio between the variance and the mean goes from ∌1\sim 1 (Poisson) at 1+ÎŽmâ‰Ș11+\delta_m\ll 1 to <1<1 (sub-Poisson) at 1+ÎŽm∌11+\delta_m\sim 1 to >1>1 (super-Poisson) at 1+ÎŽm≫11+\delta_m\gg 1. The mean bias relation is found to be well described by halo bias models based on the Press-Schechter formalism. The sub-Poisson variance can be explained as a result of halo-exclusion while the super-Poisson variance at high ÎŽm\delta_m may be explained as a result of halo clustering. A simple phenomenological model is proposed to describe the behavior of the variance as a function of ÎŽm\delta_m. Galaxy distribution in the cosmic density field predicted by semi-analytic models of galaxy formation shows similar stochastic behavior. We discuss the implications of the stochasticity in halo bias to the modelling of higher-order moments of dark haloes and of galaxies.Comment: 10 pages, 6 figures, Latex using MN2e style. Minor changes. Accepted for publication in MNRA

    NEW CORRECTIONS OF ORDER α3(Zα)4\alpha^3(Z\alpha)^4 AND α2(Zα)6\alpha^2(Z\alpha)^6 TO THE LAMB SHIFT

    Full text link
    Two corrections to the Lamb shift, induced by the polarization operator insertions in the external photon lines are calculated.Comment: 4 pages, revtex, no figure
    • 

    corecore